Solve for all solutions of \( x \) : \( 2 x^{2}+16 x+20=0 \) \( x=4 \pm \sqrt{6} \) \( x=-4 \pm \sqrt{26} \) \( x=-2 \pm \sqrt{6} \) \( x=-4 \pm \sqrt{6} \)
Solución de inteligencia artificial de Upstudy
Responder
Solución

¡Inicia sesión para desbloquear respuestas gratis!
Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.

Respondido por UpStudy AI y revisado por un tutor profesional
The Deep Dive
To solve the quadratic equation \( 2x^2 + 16x + 20 = 0 \), we can first simplify it by dividing all terms by 2, yielding: \[ x^2 + 8x + 10 = 0. \] Next, we can apply the quadratic formula \( x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \), where \( a = 1 \), \( b = 8 \), and \( c = 10 \). Calculating the discriminant: \[ b^2 - 4ac = 8^2 - 4 \cdot 1 \cdot 10 = 64 - 40 = 24. \] Now, applying the quadratic formula: \[ x = \frac{-8 \pm \sqrt{24}}{2 \cdot 1} = \frac{-8 \pm 2\sqrt{6}}{2} = -4 \pm \sqrt{6}. \] Thus, the solutions are: \[ x = -4 + \sqrt{6} \quad \text{and} \quad x = -4 - \sqrt{6}. \] So, the correct answers are \( x = -4 \pm \sqrt{6} \). When dealing with quadratic equations, it’s helpful to remember that the solutions can be expressed in various forms. One common mistake is miscalculation of the discriminant, which can drastically change the final answer. Always double-check arithmetic operations, especially with negative signs!
