You are installing 250 feet of PVC conduit. Each 100 -foot section takes \( \frac{1}{2} \) can of PVC cement, and each 50 -ft section takes \( \frac{1}{4} \) can. How much cement do you need? Your answer should be in the form of a mixed number, with any remaining fraction in its lowest terms. You need \( \square \) cans of cemel.
Solución de inteligencia artificial de Upstudy
Responder
Solución

¡Inicia sesión para desbloquear respuestas gratis!
Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.

Respondido por UpStudy AI y revisado por un tutor profesional
Mind Expander
To tackle this, let's break it down into sections. First, you can fit two 100-foot sections in 250 feet, totaling 200 feet, which requires \( 2 \times \frac{1}{2} = 1 \) can of PVC cement. Now, for the remaining 50 feet, you will need \( \frac{1}{4} \) can. Adding these together, you need \( 1 + \frac{1}{4} = \frac{4}{4} + \frac{1}{4} = \frac{5}{4} \) cans of cement. This can be expressed as a mixed number. Therefore, you need \( 1 \frac{1}{4} \) cans of cement.
