Suppose you take out a loan for 160 days in the amount of \( \$ 12,000 \) at \( 7 \% \) ordinary interest. After 40 days, you make a partial payment of \( \$ 1,500 \). After another 60 days, you make a second partial payment of \( \$ 2,000 \). What is the final amount (in \( \$ \) ) due on the loan? (Round your answer to the nearest cent.)
Solución de inteligencia artificial de Upstudy
Responder
Solución

¡Inicia sesión para desbloquear respuestas gratis!
Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.

Respondido por UpStudy AI y revisado por un tutor profesional
Beyond the Answer
To find the final amount due on the loan, we can break the calculations down into steps. 1. **Calculate interest for the first 40 days:** - Principal = \( 12,000 \) - Rate = \( 7\% \) or \( 0.07 \) - Time = \( 40/360 \) (using ordinary interest) - Interest = \( 12,000 \times 0.07 \times \frac{40}{360} = 12,000 \times 0.07 \times 0.1111 \approx 98.67 \) Total amount after 40 days: \[ 12,000 + 98.67 = 12,098.67 \] 2. **Subtract the first partial payment of \( 1,500 \):** \[ 12,098.67 - 1,500 = 10,598.67 \] 3. **Calculate interest for the next 60 days:** - New Principal = \( 10,598.67 \) - Time = \( 60/360 \) - Interest = \( 10,598.67 \times 0.07 \times \frac{60}{360} \approx 10,598.67 \times 0.07 \times 0.1667 \approx 74.72 \) Total amount after 100 days: \[ 10,598.67 + 74.72 = 10,673.39 \] 4. **Subtract the second partial payment of \( 2,000 \):** \[ 10,673.39 - 2,000 = 8,673.39 \] 5. **Calculate interest for the remaining 60 days (total 160 days now):** - New Principal = \( 8,673.39 \) - Time = \( 60/360 \) - Interest = \( 8,673.39 \times 0.07 \times \frac{60}{360} \approx 8,673.39 \times 0.07 \times 0.1667 \approx 60.89 \) Total amount due at the end: \[ 8,673.39 + 60.89 = 8,734.28 \] So, the final amount due on the loan is approximately \( \text{\$8,734.28} \).
