Pregunta
upstudy study bank question image url

Solve for \( x \) (1) \( \frac{3}{x-1}>0 \) 2) \( \frac{-2}{x+3} \geq 0 \)

Ask by Hill Elliott. in South Africa
Feb 25,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

\( x > 1 \) or \( x < -3 \).

Solución

Solve the equation \( \frac{3}{x-1}>0 \). Solve the inequality by following steps: - step0: Solve the inequality by testing the values in the interval: \(\frac{3}{x-1}>0\) - step1: Find the domain: \(\frac{3}{x-1}>0,x\neq 1\) - step2: Set the denominator of \(\frac{3}{x-1}\) equal to 0\(:\) \(x=1\) - step3: Determine the test intervals: \(\begin{align}&x<1\\&x>1\end{align}\) - step4: Choose a value: \(\begin{align}&x_{1}=0\\&x_{2}=2\end{align}\) - step5: Test the chosen value: \(\begin{align}&x<1\textrm{ }\textrm{is not a solution}\\&x>1\textrm{ }\textrm{is the solution}\end{align}\) - step6: The final solution is \(x>1:\) \(x>1\) - step7: Check if the solution is in the defined range: \(x>1,x\neq 1\) - step8: Find the intersection: \(x>1\) Solve the equation \( \frac{-2}{x+3} \geq 0 \). Solve the inequality by following steps: - step0: Solve the inequality by testing the values in the interval: \(\frac{-2}{x+3}\geq 0\) - step1: Find the domain: \(\frac{-2}{x+3}\geq 0,x\neq -3\) - step2: Rewrite the fraction: \(-\frac{2}{x+3}\geq 0\) - step3: Change the sign: \(\frac{2}{x+3}\leq 0\) - step4: Set the denominator of \(\frac{2}{x+3}\) equal to 0\(:\) \(x=-3\) - step5: Determine the test intervals: \(\begin{align}&x<-3\\&x>-3\end{align}\) - step6: Choose a value: \(\begin{align}&x_{1}=-4\\&x_{2}=-2\end{align}\) - step7: Test the chosen value: \(\begin{align}&x<-3\textrm{ }\textrm{is the solution}\\&x>-3\textrm{ }\textrm{is not a solution}\end{align}\) - step8: Include the critical value: \(\begin{align}&x<-3\textrm{ }\textrm{is the solution}\end{align}\) - step9: The final solution is \(x<-3:\) \(x<-3\) - step10: Check if the solution is in the defined range: \(x<-3,x\neq -3\) - step11: Find the intersection: \(x<-3\) The solutions to the given inequalities are: 1) \( x > 1 \) 2) \( x < -3 \)

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Bonus Knowledge

To solve the inequality \( \frac{3}{x-1}>0 \), we need to find where the fraction is positive. Since the numerator \( 3 \) is always positive, we can focus on the denominator. The fraction is positive when \( x - 1 > 0 \), so \( x > 1 \). For the second inequality \( \frac{-2}{x+3} \geq 0 \), the numerator \( -2 \) is negative, so the fraction will be non-negative when the denominator \( x + 3 \) is negative, which means \( x + 3 < 0 \) or \( x < -3 \). Combining both results: 1. From the first inequality, \( x > 1 \). 2. From the second inequality, \( x < -3 \). Since there are no \( x \) values that can satisfy both conditions simultaneously, the solution set is empty. So, the final answer is that there are no solutions for \( x \). For a little historical touch, inequalities have been a staple of mathematics since ancient times, with the Greeks first exploring the idea of comparing quantities. Fast forward to today, inequalities help us make decisions in countless fields, from economics to engineering! If you’re wrestling with inequalities, a common mistake is forgetting to flip the inequality sign when multiplying or dividing by a negative number! Always double-check that detail to avoid sneaky errors.

preguntas relacionadas

ISCELÁNEA cribir, por simple inspección, el resultado de: \( \begin{array}{lll}(x+2)^{2} & \text { 14. }(x+y+1)(x-y-1) & \text { 27. }\left(2 a^{3}-5 b^{4}\right)^{2} \\ (x+2)(x+3) & \text { 15. }(1-a)(a+1) & \text { 28. }\left(a^{3}+12\right)\left(a^{3}-15\right) \\ (x+1)(x-1) & \text { 16. }(m-8)(m+12) & \text { 29. }\left(m^{2}-m+n\right)\left(n+m+m^{2}\right) \\ (x-1)^{2} & \text { 17. }\left(x^{2}-1\right)\left(x^{2}+3\right) & \text { 30. }\left(x^{4}+7\right)\left(x^{4}-11\right) \\ (n+3)(n+5) & \text { 18. }\left(x^{3}+6\right)\left(x^{3}-8\right) & \text { 31. }(11-a b)^{2} \\ (m-3)(m+3) & \text { 19. }\left(5 x^{3}+6 m^{4}\right)^{2} & \text { 32. }\left(x^{2} y^{3}-8\right)\left(x^{2} y^{3}+6\right) \\ (a+b-1)(a+b+1) & \text { 20. }\left(x^{4}-2\right)\left(x^{4}+5\right) & \text { 33. }(a+b)(a-b)\left(a^{2}-b^{2}\right) \\ (1+b)^{3} & \text { 21. }(1-a+b)(b-a-1) & \text { 34. }(x+1)(x-1)\left(x^{2}-2\right) \\ \left(a^{2}+4\right)\left(a^{2}-4\right) & \text { 22. }\left(a^{x}+b^{n}\right)\left(a^{x}-b^{n}\right) & \text { 35. }(a+3)\left(a^{2}+9\right)(a-3) \\ \left(3 a b-5 x^{2}\right)^{2} & \text { 23. }\left(x^{a+1}-8\right)\left(x^{a+1}+9\right) & \text { 36. }(x+5)(x-5)\left(x^{2}+1\right) \\ (a b+3)(3-a b) & \text { 24. }\left(a^{2} b^{2}+c^{2}\right)\left(a^{2} b^{2}-c^{2}\right) & \text { 37. }(a+1)(a-1)(a+2)(a-2) \\ (1-4 a x)^{2} & \text { 25. }(2 a+x)^{3} & \text { 36. }\left(x^{2}-11\right)\left(x^{2}-2\right)\end{array} \) \( \left(a^{2}+8\right)\left(a^{2}-7\right) \)
Álgebra Mexico Feb 26, 2025
¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad