Pregunta
upstudy study bank question image url

13. An object is 9 cm from a convex mirror that has a focal length of 5 cm . Determine the image location, magnification, real or virtual, and upright or inverted for the object. a. Using the equation:

Ask by Delgado Mckenzie. in the United States
Feb 24,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

The image is located about 3.21 cm behind the mirror, is upright and smaller than the object.

Solución

For a convex mirror, we use the mirror equation   1/f = 1/v + 1/u and the magnification equation   m = –v/u Here the given quantities are:  • Object distance, u = 9 cm (positive by convention, since the object is in front of the mirror)  • Focal length, f = 5 cm is given for a convex mirror. However, by the sign convention for mirrors, the focal length of a convex mirror is negative, so we take f = –5 cm. Step 1. Find the image distance, v.  Starting with the mirror equation:   1/(–5) = 1/v + 1/9  Solve for 1/v:   1/v = 1/(–5) – 1/9 Find a common denominator (45):   1/v = (–9/45) – (5/45) = –14/45 Thus,   v = –45/14 ≈ –3.21 cm The negative value for v indicates that the image is formed behind the mirror. For mirrors, a negative v means the image is virtual. Step 2. Calculate the magnification, m.  Using the magnification formula:   m = –v/u = –(–45/14)/9 = (45/14)/9 Simplify:   m = 45/(14 × 9) = 45/126 = 5/14 ≈ 0.36 The positive value of m tells us that the image is upright relative to the object. Since |m| < 1, the image is smaller than the object. Summary of the results:  • Image location: v ≈ –3.21 cm (meaning the image is formed 3.21 cm behind the mirror)  • Magnification: m ≈ +0.36 (the image is 36% the size of the object)  • Nature of the image: Virtual (because v is negative) and upright (because m is positive)

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Mind Expander

To find the image location, we can use the mirror formula: \( \frac{1}{f} = \frac{1}{u} + \frac{1}{v} \), where \( f \) is the focal length (positive for convex mirrors), \( u \) is the object distance (negative for convex mirrors), and \( v \) is the image distance. Plugging in the values, we have: \( f = +5 \) cm, \( u = -9 \) cm. Rearranging gives us \( \frac{1}{v} = \frac{1}{f} - \frac{1}{u} \), or \( \frac{1}{v} = \frac{1}{5} - \frac{1}{-9} \). Calculating gives \( v = +3.17 \) cm. The positive value indicates that the image is formed on the same side as the object. Next, to find magnification \( m \), we use: \( m = -\frac{v}{u} \). Substituting \( v = 3.17 \) cm and \( u = -9 \) cm gives \( m = -\frac{3.17}{-9} = 0.35 \). The positive magnification means the image is upright. Thus, the image is virtual, upright, and reduced in size. --- Convex mirrors are fascinating! Historically, they were used in ancient times for personal grooming and have evolved into essential tools for road safety, providing wider angles of view to reduce blind spots. Every time you see a convex mirror on a shopkeeper's counter or on a vehicle, you’re witnessing their incredible utility! For a practical problem-solving tip, always remember to keep track of your sign conventions: object distance (u) should be negative for concave and convex mirrors, while the focal length (f) is positive for convex mirrors. Not adhering to these can lead to mix-ups in signs and errors in calculating the image distance and magnification!

preguntas relacionadas

Latest Geometry Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad