Pregunta
upstudy study bank question image url

TASK 1 If: \[ \begin{array}{l} x^{2}-3 x y+2 y^{2}=0 \\ \therefore(x-2 y)(x-y)=0 \\ \therefore x=2 y \text { of } x=y \\ \therefore \frac{x}{y}=\frac{2}{1} \text { of } \frac{x}{y}=\frac{1}{1} \end{array} \] A: For cach equation: \[ \begin{array}{l} x^{2}-2 x y+y^{2}=0 \\ 5 x^{2}-13 x y+8 y^{2}=0 \\ 8 x^{2}-21 x y+13 y^{2}=0 \end{array} \] 1. Solve for \( x \) in terms of \( y \). 2. Find the value of the ration \( \frac{x}{y} \).

Ask by Bowers Hart. in South Africa
Feb 25,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

For each equation: 1. \( x = y \) → \( \frac{x}{y} = 1 \) 2. \( x = \frac{8}{5}y \) or \( x = y \) → \( \frac{x}{y} = \frac{8}{5} \) or \( 1 \) 3. \( x = \frac{13}{8}y \) or \( x = y \) → \( \frac{x}{y} = \frac{13}{8} \) or \( 1 \) So, the ratios \( \frac{x}{y} \) are 1, \( \frac{8}{5} \), and \( \frac{13}{8} \).

Solución

To solve the equations given in Task 1, we will follow the steps outlined in the problem. We will solve each equation for \( x \) in terms of \( y \) and then find the ratio \( \frac{x}{y} \). ### 1. Solve for \( x \) in terms of \( y \) #### Equation 1: \( x^{2} - 2xy + y^{2} = 0 \) This is a quadratic equation in \( x \). We can use the quadratic formula: \[ x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \] where \( a = 1 \), \( b = -2y \), and \( c = y^2 \). Calculating the discriminant: \[ b^2 - 4ac = (-2y)^2 - 4(1)(y^2) = 4y^2 - 4y^2 = 0 \] Since the discriminant is zero, there is one solution: \[ x = \frac{2y}{2} = y \] #### Equation 2: \( 5x^{2} - 13xy + 8y^{2} = 0 \) Using the quadratic formula again with \( a = 5 \), \( b = -13y \), and \( c = 8y^2 \): Calculating the discriminant: \[ b^2 - 4ac = (-13y)^2 - 4(5)(8y^2) = 169y^2 - 160y^2 = 9y^2 \] Now, applying the quadratic formula: \[ x = \frac{13y \pm \sqrt{9y^2}}{2 \cdot 5} = \frac{13y \pm 3y}{10} \] This gives us two solutions: 1. \( x = \frac{16y}{10} = \frac{8y}{5} \) 2. \( x = \frac{10y}{10} = y \) #### Equation 3: \( 8x^{2} - 21xy + 13y^{2} = 0 \) Using the quadratic formula with \( a = 8 \), \( b = -21y \), and \( c = 13y^2 \): Calculating the discriminant: \[ b^2 - 4ac = (-21y)^2 - 4(8)(13y^2) = 441y^2 - 416y^2 = 25y^2 \] Now, applying the quadratic formula: \[ x = \frac{21y \pm \sqrt{25y^2}}{2 \cdot 8} = \frac{21y \pm 5y}{16} \] This gives us two solutions: 1. \( x = \frac{26y}{16} = \frac{13y}{8} \) 2. \( x = \frac{16y}{16} = y \) ### 2. Find the value of the ratio \( \frac{x}{y} \) Now we can summarize the ratios for each equation: 1. From the first equation: \[ \frac{x}{y} = 1 \] 2. From the second equation: \[ \frac{x}{y} = \frac{8}{5} \quad \text{and} \quad \frac{x}{y} = 1 \] 3. From the third equation: \[ \frac{x}{y} = \frac{13}{8} \quad \text{and} \quad \frac{x}{y} = 1 \] ### Summary of Results - For the first equation: \( \frac{x}{y} = 1 \) - For the second equation: \( \frac{x}{y} = \frac{8}{5} \) or \( 1 \) - For the third equation: \( \frac{x}{y} = \frac{13}{8} \) or \( 1 \) Thus, the values of the ratio \( \frac{x}{y} \) for each equation are \( 1 \), \( \frac{8}{5} \), and \( \frac{13}{8} \).

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Extra Insights

To solve these equations, we can use the quadratic formula, and from there we’ll find \( x \) in terms of \( y \) and the corresponding ratios. ### For the first equation: \[ x^{2}-2xy+y^{2}=0 \] This can be factored as: \[ (x - y)(x - y) = 0 \] Thus, we have \( x = y \), giving us the ratio: \[ \frac{x}{y} = \frac{1}{1}. \] ### For the second equation: \[ 5x^{2}-13xy+8y^{2}=0 \] Using the quadratic formula: \[ x = \frac{13y \pm \sqrt{(-13)^2 - 4(5)(8)}}{2(5)} = \frac{13y \pm \sqrt{169 - 160}}{10} = \frac{13y \pm 3}{10}. \] This gives us two solutions: 1. \( x = \frac{13y + 3}{10} \) 2. \( x = \frac{13y - 3}{10} \) From here, the ratios are: 1. \( \frac{x}{y} = \frac{13}{10} + \frac{3}{10y} \) or around \( 1.3 \) when \( y \) is not much larger than \( 3 \). 2. \( \frac{x}{y} = \frac{13}{10} - \frac{3}{10y} \), which also gives close to \( 1.3 \) for similar values of \( y \). ### For the third equation: \[ 8x^{2}-21xy+13y^{2}=0 \] Applying the quadratic formula: \[ x = \frac{21y \pm \sqrt{(-21)^2 - 4(8)(13)}}{2(8)} = \frac{21y \pm \sqrt{441 - 416}}{16} = \frac{21y \pm 5}{16}. \] This results in two solutions: 1. \( x = \frac{21y + 5}{16} \), yielding the ratio \( \frac{x}{y} \approx 1.31 \). 2. \( x = \frac{21y - 5}{16} \), with ratios indicating a similar trend. From the above calculations, you can see that the ratios vary but hover around \( \frac{1}{1} \) and \( \frac{13}{10} \) to \( \frac{21}{16} \) depending on the specific roots derived from y-values.

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad