TASK 1 If: \[ \begin{array}{l} x^{2}-3 x y+2 y^{2}=0 \\ \therefore(x-2 y)(x-y)=0 \\ \therefore x=2 y \text { of } x=y \\ \therefore \frac{x}{y}=\frac{2}{1} \text { of } \frac{x}{y}=\frac{1}{1} \end{array} \] A: For cach equation: \[ \begin{array}{l} x^{2}-2 x y+y^{2}=0 \\ 5 x^{2}-13 x y+8 y^{2}=0 \\ 8 x^{2}-21 x y+13 y^{2}=0 \end{array} \] 1. Solve for \( x \) in terms of \( y \). 2. Find the value of the ration \( \frac{x}{y} \).
Solución de inteligencia artificial de Upstudy
Responder
Solución
Respondido por UpStudy AI y revisado por un tutor profesional


Extra Insights
To solve these equations, we can use the quadratic formula, and from there we’ll find \( x \) in terms of \( y \) and the corresponding ratios. ### For the first equation: \[ x^{2}-2xy+y^{2}=0 \] This can be factored as: \[ (x - y)(x - y) = 0 \] Thus, we have \( x = y \), giving us the ratio: \[ \frac{x}{y} = \frac{1}{1}. \] ### For the second equation: \[ 5x^{2}-13xy+8y^{2}=0 \] Using the quadratic formula: \[ x = \frac{13y \pm \sqrt{(-13)^2 - 4(5)(8)}}{2(5)} = \frac{13y \pm \sqrt{169 - 160}}{10} = \frac{13y \pm 3}{10}. \] This gives us two solutions: 1. \( x = \frac{13y + 3}{10} \) 2. \( x = \frac{13y - 3}{10} \) From here, the ratios are: 1. \( \frac{x}{y} = \frac{13}{10} + \frac{3}{10y} \) or around \( 1.3 \) when \( y \) is not much larger than \( 3 \). 2. \( \frac{x}{y} = \frac{13}{10} - \frac{3}{10y} \), which also gives close to \( 1.3 \) for similar values of \( y \). ### For the third equation: \[ 8x^{2}-21xy+13y^{2}=0 \] Applying the quadratic formula: \[ x = \frac{21y \pm \sqrt{(-21)^2 - 4(8)(13)}}{2(8)} = \frac{21y \pm \sqrt{441 - 416}}{16} = \frac{21y \pm 5}{16}. \] This results in two solutions: 1. \( x = \frac{21y + 5}{16} \), yielding the ratio \( \frac{x}{y} \approx 1.31 \). 2. \( x = \frac{21y - 5}{16} \), with ratios indicating a similar trend. From the above calculations, you can see that the ratios vary but hover around \( \frac{1}{1} \) and \( \frac{13}{10} \) to \( \frac{21}{16} \) depending on the specific roots derived from y-values.
