Pregunta
upstudy study bank question image url

Finding a final amount in a word problem on exponential growth or decay A city has a population of 310,000 people. Suppose that each year the population grows by \( 6.5 \% \). What will the population be after 15 years? Use the calculator provided and round your answer to the nearest whole number. people

Ask by Evans Stephens. in Mexico
Feb 26,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

After 15 years, the population will be approximately 797,271 people.

Solución

To find the population after 15 years, we can use the formula for exponential growth: \[ A = P(1 + r)^n \] where: - \( A \) is the final amount (population after 15 years), - \( P \) is the initial amount (population at the start, 310,000 people), - \( r \) is the growth rate (6.5% or 0.065), - \( n \) is the number of years (15 years). Substitute the given values into the formula: \[ A = 310,000(1 + 0.065)^{15} \] Now, we can calculate the population after 15 years using the calculator provided. Calculate the value by following steps: - step0: Calculate: \(310000\left(1+0.065\right)^{15}\) - step1: Add the numbers: \(310000\times 1.065^{15}\) - step2: Convert the expressions: \(310000\left(\frac{213}{200}\right)^{15}\) - step3: Simplify: \(310000\times \frac{213^{15}}{200^{15}}\) - step4: Rewrite the expression: \(200\times 1550\times \frac{213^{15}}{200^{15}}\) - step5: Reduce the numbers: \(1550\times \frac{213^{15}}{200^{14}}\) - step6: Rewrite the expression: \(50\times 31\times \frac{213^{15}}{200^{14}}\) - step7: Rewrite the expression: \(50\times 31\times \frac{213^{15}}{50^{14}\times 4^{14}}\) - step8: Reduce the numbers: \(31\times \frac{213^{15}}{50^{13}\times 4^{14}}\) - step9: Multiply the fractions: \(\frac{31\times 213^{15}}{50^{13}\times 4^{14}}\) The population after 15 years will be approximately 797,271 people. Rounding to the nearest whole number, the population after 15 years will be 797,271 people.

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Beyond the Answer

To find the final population after 15 years with an annual growth rate of \(6.5\%\), you can use the formula for exponential growth: \[ P(t) = P_0(1 + r)^t \] where: - \( P_0 \) is the initial population (310,000), - \( r \) is the growth rate (0.065), - \( t \) is the time in years (15). Plugging in the numbers: \[ P(15) = 310,000(1 + 0.065)^{15} \] Calculate \(1 + 0.065 = 1.065\), then raise it to the power of 15, multiply by 310,000, and you'll find the population after 15 years. After doing those calculations, the approximate answer is: **Total Population ≈ 693,474 people.** Keep in mind that compound growth can lead to much larger numbers than you might expect when extended over several years!

preguntas relacionadas

Latest Pre Calculus Questions

1.3.2 Make a conjecture with regard to \( r^{n} \) and \( S_{n} \) as \( n \rightarrow \infty \) (2) 1.4 CASE 3: \( r=1 \) 1.4.1 What is the sum of the geometric series \[ S_{n}=a+a r+a r^{2}+\ldots a r^{n-1} \text { if } r=1 \text { ? } \] 1.4.2 Make a conjecture with regard to \( r^{n} \) and \( S_{n} \) as \( n \rightarrow \infty \) (2) 1.5 CASE 4: \( r=-1 \) 1.5.1 What is the sum of the geometric series \[ S_{n}=a+a r+a r^{2}+\ldots a r^{n-1} \text { if } r=-1 ? \] 1.5.2 Do the sums above approach some finite particular number as \( n \rightarrow \infty \) i.e. is the sequence divergent or convergent? 1.6 CASE 5: \( -1<r<1 \) REQUIREMENTS: - One A4 papers - Provided grid 1.6.1 Write THREE possible values of \( r \) such that \( -1<r<1 \). 1.6.2 Step 1. Cut the A4 size paper along the longest side into two equal Rectangles and define their areas to be 16 unit \( ^{2} \). 1.6.3 Step 2. Place one half of the rectangle in Step 1 on the desktop and cut the other half along the longest side in to two equal rectangles. 1.6.4 Step 3. Place one half of the rectangle in Step 2 on the desktop and cut the other half along the longest side into two equal rectangles. 1.6.5 Step 4. Continue with the procedures from Step 3 until you find it too difficult to fold and cut the piece of paper you are holding. 1.6.6 Step 5. The first piece of paper you placed on the desktop has an area of \( \frac{1}{2} \) the area of the A4. The second piece of paper has an area of \( \frac{1}{4} \) the area of the A4. Write the areas of the next three pieces of paper. 1.6.7 Explain why these areas form a geometric seauence
¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad