A person's systolic blood pressure, which is measured in millimeters of mercury ( mm Hg ), depends on a person's age, in years. The equation: \[ P=0.005 y^{2}-0.02 y+122 \] gives a person's blood pressure, \( P \), at age \( y \) years. A.) Find the systolic pressure, to the nearest tenth of a millimeter, for a person of age 41 years. \( \square \) B.) If a person's systolic pressure is 130.8 mm Hg , what is their age (rounded to the nearest whole year)? \( \square \)
Solución de inteligencia artificial de Upstudy
Responder
Solución

¡Inicia sesión para desbloquear respuestas gratis!
Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.

Respondido por UpStudy AI y revisado por un tutor profesional
Mind Expander
First, let's solve part A by substituting \( y = 41 \) into the equation \( P = 0.005 y^2 - 0.02 y + 122 \). \[ P = 0.005(41^2) - 0.02(41) + 122 \] \[ P = 0.005(1681) - 0.82 + 122 \] \[ P = 8.405 - 0.82 + 122 \] \[ P = 129.585 \] Rounding it to the nearest tenth, the systolic pressure for a person of age 41 years is **129.6 mm Hg**. Now, for part B, we need to find \( y \) such that \( P = 130.8 \). We set up the equation: \[ 130.8 = 0.005 y^2 - 0.02 y + 122 \] Rearranging: \[ 0.005 y^2 - 0.02 y + 122 - 130.8 = 0 \] \[ 0.005 y^2 - 0.02 y - 8.8 = 0 \] To make calculations easier, multiply the entire equation by 1000: \[ 5y^2 - 20y - 8800 = 0 \] Using the quadratic formula \( y = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \): Here, \( a = 5 \), \( b = -20 \), and \( c = -8800 \). Calculating the discriminant: \[ b^2 - 4ac = (-20)^2 - 4(5)(-8800) \] \[ = 400 + 176000 = 176400 \] Calculating \( y \): \[ y = \frac{-(-20) \pm \sqrt{176400}}{2(5)} \] \[ y = \frac{20 \pm 420}{10} \] Calculating the two potential values for \( y \): \[ y_1 = \frac{440}{10} = 44, \quad y_2 = \frac{-400}{10} = -40 \] Since age cannot be negative, we consider \( y = 44 \). So, if a person’s systolic pressure is 130.8 mm Hg, their age is **44 years**.
