Pregunta
upstudy study bank question image url

\( f(x)=\frac{x+3}{(x-1)(x+3)} \quad \) Find the vertical asymptotes and holes of the function. \( \begin{array}{l}\text { Hole: }(-3,-1 / 4) \\ \text { VA: } x=1,-3\end{array} \) \( \begin{array}{l}\text { Hole: None; } \\ \text { VA: } x=1,-3\end{array} \) Hole: \( (-3,-1 / 4) \) VA: \( x=1 \)

Ask by Potter Grant. in the United States
Feb 24,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

Hole at (–3, –1/4), vertical asymptote at x = 1.

Solución

The given function is   f(x) = (x + 3) ⁄ [(x – 1)(x + 3)]. Step 1. Factor and cancel common factors.   Notice that (x + 3) appears in both the numerator and the denominator.   However, we can only cancel (x + 3) if we remember that x = –3 is not allowed in the original function. After canceling, we have   f(x) = 1 ⁄ (x – 1)  for x ≠ –3. Step 2. Identify the hole.   The cancellation indicates there is a removable discontinuity (a hole) at x = –3.   To find the y-coordinate of the hole, plug x = –3 into the simplified function:     f(–3) = 1 ⁄ (–3 – 1) = 1 ⁄ (–4) = –1/4.   Thus, there is a hole at (–3, –1/4). Step 3. Find the vertical asymptote.   The vertical asymptote(s) come from the factors in the denominator that were not canceled.   The denominator of the simplified function is x – 1.   Set x – 1 = 0, which gives x = 1.   Thus, there is a vertical asymptote at x = 1. Final Answer:   Hole: (–3, –1/4)   Vertical Asymptote: x = 1.

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Extra Insights

To find the vertical asymptotes and holes in the function \( f(x)=\frac{x+3}{(x-1)(x+3)} \), we start by examining the denominator. A vertical asymptote occurs where the denominator equals zero but the numerator does not. Here, the poles are at \( x=1 \) (vertical asymptote) and \( x=-3 \). However, because \( x+3 \) cancels out from both the numerator and denominator, there is a hole at \( x=-3 \). So the answer is: Hole at \( (-3, -1/4) \) and VA at \( x=1 \). When simplifying rational functions, it's easy to overlook common factors that can indicate holes. Remember that wherever the function is undefined due to factors cancelling, you've got a hole instead of a vertical asymptote. Always double-check factors in both the numerator and denominator before drawing conclusions!

Latest Pre Calculus Questions

1.3.2 Make a conjecture with regard to \( r^{n} \) and \( S_{n} \) as \( n \rightarrow \infty \) (2) 1.4 CASE 3: \( r=1 \) 1.4.1 What is the sum of the geometric series \[ S_{n}=a+a r+a r^{2}+\ldots a r^{n-1} \text { if } r=1 ? \] 1.4.2 Make a conjecture with regard to \( r^{n} \) and \( S_{n} \) as \( n \rightarrow \infty \) 1.5 CASE 4: \( r=-1 \) 1.5.1 What is the sum of the geometric series \[ S_{n}=a+a r+a r^{2}+\ldots a r^{n-1} \text { if } r=-1 ? \] 1.5.2 Do the sums above approach some finite particular number as \( n \rightarrow \infty \) i.e. is the sequence divergent or convergent? 1.6 CASE 5: \( -1<r<1 \) REQUIREMENTS: - One A4 papers - Provided grid 1.6.1 Write THREE possible values of \( r \) such that \( -1<r<1 \). 1.6.2 Step 1. Cut the A4 size paper along the longest side into two equal Rectangles and define their areas to be 16 unit \( ^{2} \). 1.6.3 Step 2. Place one half of the rectangle in Step 1 on the desktop and cut the other half along the longest side in to two equal rectangles. 1.6.4 Step 3. Place one half of the rectangle in Step 2 on the desktop and cut the other half along the longest side into two equal rectangles. 1.6.5 Step 4. Continue with the procedures from Step 3 until you find it too difficult to fold and cut the piece of paper you are holding. 1.6.6 Step 5. The first piece of paper you placed on the desktop has an area of \( \frac{1}{2} \) the area of the A4. The second piece of paper has an area of \( \frac{1}{4} \) the area of the A4. Write the areas of the next three pieces of paper. (3) (I) 1.6.7 Explain why these areas form a geometric sequence.
¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad