\( \begin{array}{l}7 x-3 y=4 \\ 2 x-4 y=1\end{array} \) The solution to the system of equations is \( (3 / 22,-7 / 22) \) \( (13 / 34,-15 / 34) \) \( (13 / 22,1 / 22) \)
Solución de inteligencia artificial de Upstudy
Responder
Solución

¡Inicia sesión para desbloquear respuestas gratis!
Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.

Respondido por UpStudy AI y revisado por un tutor profesional
Bonus Knowledge
To solve the system of equations: 1. Start with the two equations: \( 7x - 3y = 4 \) (Equation 1) \( 2x - 4y = 1 \) (Equation 2) 2. Multiply Equation 2 by 3 to align it for elimination: \( 6x - 12y = 3 \) (Equation 2 modified) 3. Now the system is: \( 7x - 3y = 4 \) \( 6x - 12y = 3 \) 4. Rearranging both equations to isolate one variable (like \(y\)) and using substitution or elimination will help find the values of \(x\) and \(y\). Now, let’s check the answer choices. Substitute \( (13/22, 1/22) \) back into both equations, and verify which one holds true for both equations. Upon substitution, \( (13/22, 1/22) \) will fulfill both equations, confirming it as the correct solution. So the solution to the system of equations is indeed \( (13/22, 1/22) \).
