Pregunta
upstudy study bank question image url

An amount of \( \$ 41,000 \) is borrowed for 12 years at \( 7 \% \) interest, compounded annually. Assuming that no payments are made, find the amount owed after 12 years. Use the calculator provided and round your answer to the nearest dollar.

Ask by Tucker Reese. in Mexico
Feb 26,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

The amount owed after 12 years is $92,340.

Solución

To find the amount owed after 12 years, we can use the formula for compound interest: \[ A = P \left(1 + \frac{r}{100}\right)^n \] where: - \( A \) is the amount owed after \( n \) years, - \( P \) is the principal amount (initial amount borrowed), - \( r \) is the annual interest rate (in %), - \( n \) is the number of years. Given: - Principal amount (\( P \)) = $41,000 - Annual interest rate (\( r \)) = 7% - Number of years (\( n \)) = 12 Substitute the given values into the formula: \[ A = 41000 \left(1 + \frac{7}{100}\right)^{12} \] Now, we can calculate the amount owed after 12 years using the formula. Calculate the value by following steps: - step0: Calculate: \(41000\left(1+\frac{7}{100}\right)^{12}\) - step1: Add the numbers: \(41000\left(\frac{107}{100}\right)^{12}\) - step2: Simplify: \(41000\times \frac{107^{12}}{100^{12}}\) - step3: Rewrite the expression: \(1000\times 41\times \frac{107^{12}}{100^{12}}\) - step4: Rewrite the expression: \(10^{3}\times 41\times \frac{107^{12}}{10^{24}}\) - step5: Reduce the numbers: \(41\times \frac{107^{12}}{10^{21}}\) - step6: Multiply: \(\frac{41\times 107^{12}}{10^{21}}\) The amount owed after 12 years is approximately $92,339.86. Rounding this to the nearest dollar, the amount owed after 12 years is $92,340.

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Beyond the Answer

To find the amount owed after 12 years with compound interest, you can use the formula: \[ A = P(1 + r)^n \] Where: - \( A \) is the amount owed after \( n \) years. - \( P \) is the principal amount (initial amount borrowed). - \( r \) is the annual interest rate (as a decimal). - \( n \) is the number of years the money is borrowed. In this case, \( P = 41,000 \), \( r = 0.07 \), and \( n = 12 \). Plugging in the numbers: \[ A = 41000(1 + 0.07)^{12} \] \[ A = 41000(1.07)^{12} \] \[ A = 41000 \times 2.2522 \quad (\text{approximately}) \] \[ A \approx 92243.63 \] Rounding to the nearest dollar, the amount owed after 12 years would be approximately **$92,244**. --- From ancient Rome’s sophisticated banking systems to today’s fintech innovations, the concept of interest has evolved dramatically. Ancient civilizations understood the need to charge for loans, leading to the establishment of various lending practices. The term "interest" comes from the Latin word "interesse," meaning "to be between," as it represents the cost incurred for the use of borrowed money. Understanding how compound interest works is crucial for personal finance strategies. It can either work for you when investing or against you when taking out loans. A common mistake is underestimating the power of compound growth over time. Many people only focus on the interest rate without considering the effect of compounding frequency, which can significantly impact the total amount owed or accumulated in an investment.

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad