Pregunta
Solución de inteligencia artificial de Upstudy
Respuesta verificada por el tutor
Responder
The evaluated expression is \( 4x \).
Solución
To evaluate the expression, we recognize that the cube root applies to both 64 and x³ separately. Specifically:
∛(64 x³) = ∛(64) × ∛(x³)
Since 64 is 4³, its cube root is 4. Also, the cube root of x³ is x (assuming x is a real number):
∛(64) = 4
∛(x³) = x
Multiplying these results together gives:
4 × x = 4x
Thus, the evaluated expression is 4x.
Respondido por UpStudy AI y revisado por un tutor profesional
Como
error msg


Mind Expander
To evaluate \( \sqrt[3]{64 x^{3}} \), we can break it down. The cube root of \( 64 \) is \( 4 \) because \( 4^3 = 64 \). For \( x^3 \), the cube root is simply \( x \) since \( (x)^3 = x^3 \). Putting it all together, we have: \[ \sqrt[3]{64 x^{3}} = \sqrt[3]{64} \cdot \sqrt[3]{x^3} = 4 \cdot x = 4x \] Thus, the final answer is \( 4x \).

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde
Hazte Premium