Activity 1 \( \frac{(7)\left(2^{x}\right)^{3} \cdot 2^{x}}{16^{x}} \) \( \frac{\left(22^{x}\right)^{3} \cdot 27^{x}}{8^{x} \cdot\left(3^{2}\right)^{x} \cdot 3^{x}} \) (3) \( \left(\frac{1}{4}\right)^{-3 x} \frac{1}{16^{x}} \)
Solución de inteligencia artificial de Upstudy
Responder
Solución

¡Inicia sesión para desbloquear respuestas gratis!
Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.

Respondido por UpStudy AI y revisado por un tutor profesional
Bonus Knowledge
Let’s break these expressions down and explore some fascinating insights! Can you believe that the laws of exponents apply universally in mathematics? They allow us to simplify complicated expressions easily! For example, knowing that \( a^m \cdot a^n = a^{m+n} \) can save you time and effort, especially when dealing with high powers or large bases. This simplification trick is your secret weapon in tackling complex equations without the headache! If you’re looking to dive deeper into manipulating exponents and bases, a great resource to check out is “Algebra and Trigonometry” by Michael Sullivan. It offers a comprehensive guide on exponent rules, complete with practical exercises that make learning enjoyable. Plus, the examples are not just theoretical—they’ll help you see how these concepts play out in real-life scenarios!
