Pregunta
upstudy study bank question image url

ve the linear programing problem using Simplex Method. \[ \begin{array}{l}\max Z=6 X_{1}+5 X_{2}+8 x_{3}\end{array} \] \[ \begin{array}{c}x_{1}+x_{2}+x_{3} \leq 12 \\ 2 x_{1}+x_{2}+2 x_{3} \leq 2 \\ x_{1}, x_{2}, x_{3} \quad \geq 0\end{array} \]

Ask by Reid Fleming. in Nigeria
Feb 27,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

The optimal solution is \( X_1 = 0 \), \( X_2 = 22 \), and \( X_3 = 0 \) with a maximum value of \( Z = 88 \).

Solución

To solve the given linear programming problem using the Simplex Method, we will follow these steps: 1. **Identify the objective function and constraints.** - Objective function: \[ \max Z = 6X_1 + 5X_2 + 8X_3 \] - Constraints: \[ \begin{align*} 1. & \quad X_1 + X_2 + X_3 \leq 12 \\ 2. & \quad 2X_1 + X_2 + 2X_3 \leq 2 \\ 3. & \quad X_1, X_2, X_3 \geq 0 \end{align*} \] 2. **Convert inequalities to equalities by adding slack variables.** - Let \( S_1 \) and \( S_2 \) be the slack variables for the first and second constraints, respectively. - The constraints become: \[ \begin{align*} 1. & \quad X_1 + X_2 + X_3 + S_1 = 12 \\ 2. & \quad 2X_1 + X_2 + 2X_3 + S_2 = 2 \\ \end{align*} \] 3. **Set up the initial Simplex tableau.** The tableau will include the coefficients of the objective function and the constraints. \[ \begin{array}{c|cccccc|c} \text{Basis} & X_1 & X_2 & X_3 & S_1 & S_2 & Z & \text{RHS} \\ \hline S_1 & 1 & 1 & 1 & 1 & 0 & 0 & 12 \\ S_2 & 2 & 1 & 2 & 0 & 1 & 0 & 2 \\ \hline -Z & -6 & -5 & -8 & 0 & 0 & 1 & 0 \\ \end{array} \] 4. **Perform the Simplex iterations.** - Identify the pivot column (most negative in the Z-row). - Identify the pivot row (minimum ratio of RHS to pivot column). - Perform row operations to make the pivot column a unit column. Let's perform the calculations to find the optimal solution. ### Step 1: Identify the pivot column and row - The most negative value in the Z-row is -8 (for \( X_3 \)). - The ratios for the pivot row are: - For \( S_1 \): \( \frac{12}{1} = 12 \) - For \( S_2 \): \( \frac{2}{2} = 1 \) (minimum) Thus, \( S_2 \) will be the pivot row, and \( X_3 \) will be the pivot column. ### Step 2: Perform row operations We will pivot on the element in the second row and third column (2). 1. **Row 2 (new)**: Divide by 2: \[ R_2 = \frac{1}{2} R_2 \Rightarrow (1, 0.5, 1, 0, 0.5, 0, 1) \] 2. **Row 1 (new)**: Subtract \( R_2 \) from \( R_1 \): \[ R_1 = R_1 - R_2 \Rightarrow (0, 0.5, 0, 1, -0.5, 0, 11) \] 3. **Row 3 (new)**: Add 8 times \( R_2 \) to \( R_3 \): \[ R_3 = R_3 + 8R_2 \Rightarrow (0, 0, 0, 0, 4, 1, 8) \] The new tableau is: \[ \begin{array}{c|cccccc|c} \text{Basis} & X_1 & X_2 & X_3 & S_1 & S_2 & Z & \text{RHS} \\ \hline S_1 & 0 & 0.5 & 0 & 1 & -0.5 & 0 & 11 \\ X_3 & 1 & 0.5 & 1 & 0 & 0.5 & 0 & 1 \\ \hline -Z & 0 & -4 & 0 & 0 & 4 & 1 & 8 \\ \end{array} \] ### Step 3: Repeat the process - The most negative value in the Z-row is -4 (for \( X_2 \)). - The ratios for the pivot row are: - For \( S_1 \): \( \frac{11}{0.5} = 22 \) - For \( X_3 \): \( \frac{1}{0.5} = 2 \) (minimum) Thus, \( X_3 \) will be the pivot row, and \( X_2 \) will be the pivot column. ### Step 4: Perform row operations again 1. **Row 1 (new)**: Divide by 0.5: \[ R_1 = \frac{1}{0.5} R_1 \Rightarrow (0, 1, 0, 2, -1, 0, 22) \] 2. **Row 2 (new)**: Subtract \( 0.5R_1 \) from \( R_2 \): \[ R_2 = R_2 - 0.5R_1 \Rightarrow (1, 0, 1, -1, 0, 0, 0) \] 3. **Row 3 (new)**: Add 4 times \( R_1 \) to \( R_3 \): \[ R_3 = R_3 + 4R_1 \Rightarrow (0, 0, 0, 0, 0, 1, 0) \] The new tableau is: \[ \begin{array}{c|cccccc|c} \text{Basis} & X_1 & X_2 & X_3 & S_1 & S_2 & Z & \text{RHS} \\ \hline X_2 & 0 & 1 & 0 & 2 & -1 & 0 & 22 \\ X_3 & 1 & 0 & 1 & -1 & 0 & 0 & 0 \\ \hline -Z & 0 & 0 & 0 & 8 & 0 & 1 & 88

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Mind Expander

To solve this linear programming problem using the Simplex Method, we first need to standardize the constraints by introducing slack variables. We'll transform the inequalities into equations: 1. \( x_1 + x_2 + x_3 + s_1 = 12 \) 2. \( 2x_1 + x_2 + 2x_3 + s_2 = 2 \) Here, \( s_1 \) and \( s_2 \) are the slack variables. Our objective function, expressed in standard format, becomes: \[ \max Z = 6x_1 + 5x_2 + 8x_3 + 0s_1 + 0s_2 \] Next, we can set up the initial Simplex tableau: \[ \begin{array}{|c|c|c|c|c|c|c|c|} \hline \text{Basis} & x_1 & x_2 & x_3 & s_1 & s_2 & \text{RHS} \\ \hline s_1 & 1 & 1 & 1 & 1 & 0 & 12 \\ s_2 & 2 & 1 & 2 & 0 & 1 & 2 \\ \hline -Z & -6 & -5 & -8 & 0 & 0 & 0 \\ \hline \end{array} \] You proceed to identify the entering and leaving variables based on the tableau's pivot column and row. Continuing iterations will provide the optimal solution, eventually leading to the best values for \( x_1, x_2, x_3 \), and the maximum \( Z \). Now onto some extra flavorful insights: The Simplex Method was developed by George Dantzig in the 1940s, a fun fact for math lovers! His revolutionary algorithm turned out to be a game-changer in optimization problems, influencing not just operations research, but also sectors like economics, logistics, and military strategy! If you're diving deeper into linear programming, consider checking out “Operations Research: An Introduction” by Taha. It’s like the Swiss army knife of OR texts—packed with examples, methods, and applications that will sharpen your skills! And remember, practice makes perfect. You might even enjoy trying various problems to boost your understanding!

preguntas relacionadas

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad