Solución de inteligencia artificial de Upstudy
Responder
Solución
Respondido por UpStudy AI y revisado por un tutor profesional


The Deep Dive
To simplify the expression \( \frac{5}{2 \sqrt{7}-\sqrt{5}} \), we can multiply the numerator and the denominator by the conjugate of the denominator, which is \( 2 \sqrt{7} + \sqrt{5} \). This gives us: \[ \frac{5(2 \sqrt{7} + \sqrt{5})}{(2 \sqrt{7} - \sqrt{5})(2 \sqrt{7} + \sqrt{5})} \] The denominator simplifies using the difference of squares: \[ (2 \sqrt{7})^2 - (\sqrt{5})^2 = 4 \times 7 - 5 = 28 - 5 = 23 \] So now our expression looks like: \[ \frac{5(2 \sqrt{7} + \sqrt{5})}{23} \] Breaking it down, the final simplified form is: \[ \frac{10 \sqrt{7} + 5 \sqrt{5}}{23} \]
