Pregunta
upstudy study bank question image url

(c) Simplify the following, leaving your answers with positive exponenis. (1)* \( \left(x^{-3}\right)^{4} \) (2) \( \quad\left(x^{2}\right)^{-5} \) (3)* \( \left(x^{-2}\right)^{-2} \) (4) \( \left(-4 x^{-3}\right)^{3} \) (5) \( \quad\left(-2 x^{3}\right)^{4} \) (6) \( \left(x^{4}\right)^{2}+\left(x^{2}\right)^{4} \) (7) * \( 2\left(x^{4}\right)^{2}+4\left(x^{2}\right)^{4} \) (8) \( \quad\left(-x^{3}\right)^{2} \cdot\left(-x^{2}\right)^{3} \) \( (9) \star \quad 2\left(-x^{4}\right)^{2} \times 4\left(-x^{2}\right)^{4} \) (10) \( \left(3 x^{4}\right)^{2}-\left(2 x^{2}\right)^{4} \) (11)* \( 3\left(-2 a^{3}\right)^{2}-2\left(-3 a^{2}\right)^{3} \) (12) \( \left(3 x^{4}\right)^{2} \cdot\left(2 x^{2}\right)^{4} \) \( (13) * 3\left(-2 a^{3}\right)^{2} \times 2\left(-3 a^{2}\right)^{3} \) (d) Simplify the following, leaving your answers with positive exponents: \( (1)^{*}\left(\frac{a^{4}}{b^{6}}\right)^{2} \) (2) \( \left(\frac{10 x^{3} y}{5 x y^{2}}\right)^{3} \) (3) \( \left(\frac{-2 p^{4} q^{-2}}{4 p^{-6}}\right)^{3} \) (4) \( \left(\frac{3 x^{-5}}{9 x^{7}}\right)^{-2} \) (5)* \( \left(\frac{2 a^{3} \cdot 4 a^{2}}{8\left(a^{-3}\right)^{2}}\right)^{2} \) (6) \( )\left(\frac{x^{2}+x^{2}}{x^{2} \times x^{2}}\right)^{2} \)

Ask by Lynch Mcguire. in South Africa
Feb 27,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

Here are the simplified results for each expression, leaving answers with positive exponents: ### Part (c) 1. \( x^{-12} \) 2. \( x^{-10} \) 3. \( x^{4} \) 4. \( -4x^{-9} \) 5. \( 16x^{12} \) 6. \( 2x^{8} \) 7. \( 6x^{8} \) 8. \( x^{12} \) 9. \( 8x^{16} \) 10. \( -7x^{8} \) 11. \( 66a^{6} \) 12. \( 144x^{16} \) 13. \( -648a^{12} \) ### Part (d) 1. \( \frac{a^{8}}{b^{12}} \) 2. \( \frac{8x^{6}}{y^{3}} \) 3. \( -\frac{p^{30}}{8q^{6}} \) 4. \( 9x^{24} \) 5. \( a^{11} \) 6. \( \frac{4}{x^{4}} \) If you have any further questions or need additional assistance, feel free to ask!

Solución

Simplify the expression by following steps: - step0: Solution: \(2\left(x^{4}\right)^{2}\times 4\left(x^{2}\right)^{4}\) - step1: Multiply the exponents: \(2\left(x^{4}\right)^{2}\times 4x^{2\times 4}\) - step2: Multiply the exponents: \(2x^{4\times 2}\times 4x^{2\times 4}\) - step3: Multiply the numbers: \(2x^{8}\times 4x^{2\times 4}\) - step4: Multiply the numbers: \(2x^{8}\times 4x^{8}\) - step5: Multiply the terms: \(8x^{8}\times x^{8}\) - step6: Multiply the terms: \(8x^{8+8}\) - step7: Add the numbers: \(8x^{16}\) Calculate or simplify the expression \( ((x^{2}+x^{2})/(x^{2} * x^{2}))^{2} \). Simplify the expression by following steps: - step0: Solution: \(\left(\frac{\left(x^{2}+x^{2}\right)}{\left(x^{2}\times x^{2}\right)}\right)^{2}\) - step1: Remove the parentheses: \(\left(\frac{x^{2}+x^{2}}{x^{2}\times x^{2}}\right)^{2}\) - step2: Multiply the terms: \(\left(\frac{x^{2}+x^{2}}{x^{4}}\right)^{2}\) - step3: Add the terms: \(\left(\frac{2x^{2}}{x^{4}}\right)^{2}\) - step4: Divide the terms: \(\left(\frac{2}{x^{2}}\right)^{2}\) - step5: Rewrite the expression: \(\frac{2^{2}}{\left(x^{2}\right)^{2}}\) - step6: Evaluate the power: \(\frac{4}{x^{4}}\) Calculate or simplify the expression \( (a^{4}/b^{6})^{2} \). Simplify the expression by following steps: - step0: Solution: \(\left(\frac{a^{4}}{b^{6}}\right)^{2}\) - step1: Rewrite the expression: \(\frac{\left(a^{4}\right)^{2}}{\left(b^{6}\right)^{2}}\) - step2: Evaluate the power: \(\frac{a^{8}}{b^{12}}\) Calculate or simplify the expression \( (-4 x^{-3})^{3} \). Simplify the expression by following steps: - step0: Solution: \(\left(-4x^{-3}\right)^{3}\) - step1: Determine the sign: \(-\left(4x^{-3}\right)^{3}\) - step2: Use the properties of exponents: \(-4^{3}\left(x^{-3}\right)^{3}\) - step3: Evaluate the power: \(-64x^{-9}\) - step4: Simplify: \(-\frac{64}{x^{9}}\) Calculate or simplify the expression \( (x^{-3})^{4} \). Simplify the expression by following steps: - step0: Solution: \(\left(x^{-3}\right)^{4}\) - step1: Multiply the exponents: \(x^{-3\times 4}\) - step2: Multiply the numbers: \(x^{-12}\) - step3: Simplify: \(\frac{1}{x^{12}}\) Calculate or simplify the expression \( (x^{2})^{-5} \). Simplify the expression by following steps: - step0: Solution: \(\left(x^{2}\right)^{-5}\) - step1: Multiply the exponents: \(x^{2\left(-5\right)}\) - step2: Multiply the numbers: \(x^{-10}\) - step3: Simplify: \(\frac{1}{x^{10}}\) Calculate or simplify the expression \( (x^{-2})^{-2} \). Simplify the expression by following steps: - step0: Solution: \(\left(x^{-2}\right)^{-2}\) - step1: Multiply the exponents: \(x^{-2\left(-2\right)}\) - step2: Multiply the numbers: \(x^{4}\) Calculate or simplify the expression \( (x^{4})^{2}+(x^{2})^{4} \). Simplify the expression by following steps: - step0: Solution: \(\left(x^{4}\right)^{2}+\left(x^{2}\right)^{4}\) - step1: Multiply the exponents: \(\left(x^{4}\right)^{2}+x^{2\times 4}\) - step2: Multiply the exponents: \(x^{4\times 2}+x^{2\times 4}\) - step3: Multiply the numbers: \(x^{8}+x^{2\times 4}\) - step4: Multiply the numbers: \(x^{8}+x^{8}\) - step5: Collect like terms: \(\left(1+1\right)x^{8}\) - step6: Add the numbers: \(2x^{8}\) Calculate or simplify the expression \( (-2 x^{3})^{4} \). Simplify the expression by following steps: - step0: Solution: \(\left(-2x^{3}\right)^{4}\) - step1: Determine the sign: \(\left(2x^{3}\right)^{4}\) - step2: Use the properties of exponents: \(2^{4}\left(x^{3}\right)^{4}\) - step3: Evaluate the power: \(16x^{12}\) Calculate or simplify the expression \( 2(x^{4})^{2}+4(x^{2})^{4} \). Simplify the expression by following steps: - step0: Solution: \(2\left(x^{4}\right)^{2}+4\left(x^{2}\right)^{4}\) - step1: Multiply the exponents: \(2\left(x^{4}\right)^{2}+4x^{2\times 4}\) - step2: Multiply the exponents: \(2x^{4\times 2}+4x^{2\times 4}\) - step3: Multiply the numbers: \(2x^{8}+4x^{2\times 4}\) - step4: Multiply the numbers: \(2x^{8}+4x^{8}\) - step5: Collect like terms: \(\left(2+4\right)x^{8}\) - step6: Add the numbers: \(6x^{8}\) Calculate or simplify the expression \( (10 x^{3} y / (5 x y^{2}))^{3} \). Simplify the expression by following steps: - step0: Solution: \(\left(\frac{10x^{3}y}{5xy^{2}}\right)^{3}\) - step1: Divide the terms: \(\left(\frac{2x^{2}}{y}\right)^{3}\) - step2: Rewrite the expression: \(\frac{\left(2x^{2}\right)^{3}}{y^{3}}\) - step3: Evaluate the power: \(\frac{8x^{6}}{y^{3}}\) Calculate or simplify the expression \( ((-2 p^{4} q^{-2})/(4 p^{-6}))^{3} \). Simplify the expression by following steps: - step0: Solution: \(\left(\frac{\left(-2p^{4}q^{-2}\right)}{\left(4p^{-6}\right)}\right)^{3}\) - step1: Remove the parentheses: \(\left(\frac{-2p^{4}q^{-2}}{4p^{-6}}\right)^{3}\) - step2: Multiply by \(a^{-n}:\) \(\left(\frac{-2p^{4}q^{-2}p^{6}}{4}\right)^{3}\) - step3: Reduce the fraction: \(\left(-\frac{p^{10}q^{-2}}{2}\right)^{3}\) - step4: Rewrite the expression: \(\left(-\frac{p^{10}}{2q^{2}}\right)^{3}\) - step5: Rewrite the expression: \(\frac{\left(-p^{10}\right)^{3}}{\left(2q^{2}\right)^{3}}\) - step6: Evaluate the power: \(\frac{-p^{30}}{8q^{6}}\) - step7: Rewrite the fraction: \(-\frac{p^{30}}{8q^{6}}\) Calculate or simplify the expression \( 3(-2 a^{3})^{2}-2(-3 a^{2})^{3} \). Simplify the expression by following steps: - step0: Solution: \(3\left(-2a^{3}\right)^{2}-2\left(-3a^{2}\right)^{3}\) - step1: Multiply the terms: \(12a^{6}-2\left(-3a^{2}\right)^{3}\) - step2: Multiply the terms: \(12a^{6}+54a^{6}\) - step3: Collect like terms: \(\left(12+54\right)a^{6}\) - step4: Add the numbers: \(66a^{6}\) Calculate or simplify the expression \( (3 x^{4})^{2}-(2 x^{2})^{4} \). Simplify the expression by following steps: - step0: Solution: \(\left(3x^{4}\right)^{2}-\left(2x^{2}\right)^{4}\) - step1: Rewrite the expression: \(9x^{8}-\left(2x^{2}\right)^{4}\) - step2: Rewrite the expression: \(9x^{8}-16x^{8}\) - step3: Collect like terms: \(\left(9-16\right)x^{8}\) - step4: Subtract the numbers: \(-7x^{8}\) Calculate or simplify the expression \( (3 x^{4})^{2} * (2 x^{2})^{4} \). Simplify the expression by following steps: - step0: Solution: \(\left(3x^{4}\right)^{2}\left(2x^{2}\right)^{4}\) - step1: Rewrite the expression: \(9x^{8}\times 16x^{8}\) - step2: Multiply the numbers: \(144x^{8}\times x^{8}\) - step3: Multiply the terms: \(144x^{16}\) Calculate or simplify the expression \( (-x^{3})^{2} * (-x^{2})^{3} \). Simplify the expression by following steps: - step0: Solution: \(\left(x^{3}\right)^{2}\left(x^{2}\right)^{3}\) - step1: Multiply the exponents: \(\left(x^{3}\right)^{2}x^{2\times 3}\) - step2: Multiply the exponents: \(x^{3\times 2}\times x^{2\times 3}\) - step3: Multiply the numbers: \(x^{6}\times x^{2\times 3}\) - step4: Multiply the numbers: \(x^{6}\times x^{6}\) - step5: Simplify the expression: \(x^{6+6}\) - step6: Add the numbers: \(x^{12}\) Calculate or simplify the expression \( (3 x^{-5}/(9 x^{7}))^{-2} \). Simplify the expression by following steps: - step0: Solution: \(\left(\frac{3x^{-5}}{\left(9x^{7}\right)}\right)^{-2}\) - step1: Evaluate: \(\left(\frac{3x^{-5}}{9x^{7}}\right)^{-2}\) - step2: Reduce the fraction: \(\left(\frac{1}{3x^{12}}\right)^{-2}\) - step3: Evaluate the power: \(\left(3x^{12}\right)^{2}\) - step4: Use the properties of exponents: \(3^{2}\left(x^{12}\right)^{2}\) - step5: Evaluate the power: \(9x^{24}\) Calculate or simplify the expression \( (2 a^{3} * 4 a^{2})/(8(a^{-3})^{2}) \). Simplify the expression by following steps: - step0: Solution: \(\frac{\left(2a^{3}\times 4a^{2}\right)}{\left(8\left(a^{-3}\right)^{2}\right)}\) - step1: Remove the parentheses: \(\frac{2a^{3}\times 4a^{2}}{8\left(a^{-3}\right)^{2}}\) - step2: Multiply the exponents: \(\frac{2a^{3}\times 4a^{2}}{8a^{-3\times 2}}\) - step3: Multiply by \(a^{-n}:\) \(\frac{2a^{3}\times 4a^{2}\times a^{3\times 2}}{8}\) - step4: Multiply the numbers: \(\frac{2a^{3}\times 4a^{2}\times a^{6}}{8}\) - step5: Multiply: \(\frac{8a^{11}}{8}\) - step6: Reduce the fraction: \(a^{11}\) Calculate or simplify the expression \( 3(-2 a^{3})^{2} * 2(-3 a^{2})^{3} \). Simplify the expression by following steps: - step0: Solution: \(3\left(-2a^{3}\right)^{2}\times 2\left(-3a^{2}\right)^{3}\) - step1: Multiply the terms: \(6\left(-2a^{3}\right)^{2}\left(-3a^{2}\right)^{3}\) - step2: Multiply the terms: \(24a^{6}\left(-3a^{2}\right)^{3}\) - step3: Rewrite the expression: \(24a^{6}\left(-27a^{6}\right)\) - step4: Multiply the numbers: \(-648a^{6}\times a^{6}\) - step5: Multiply the terms: \(-648a^{12}\) Here are the simplified results for each expression, leaving answers with positive exponents: ### Part (c) 1. \( \left(x^{-3}\right)^{4} = \frac{1}{x^{12}} \) 2. \( \left(x^{2}\right)^{-5} = \frac{1}{x^{10}} \) 3. \( \left(x^{-2}\right)^{-2} = x^{4} \) 4. \( \left(-4 x^{-3}\right)^{3} = -\frac{64}{x^{9}} \) 5. \( \left(-2 x^{3}\right)^{4} = 16x^{12} \) 6. \( \left(x^{4}\right)^{2}+\left(x^{2}\right)^{4} = 2x^{8} \) 7. \( 2\left(x^{4}\right)^{2}+4\left(x^{2}\right)^{4} = 6x^{8} \) 8. \( \left(-x^{3}\right)^{2} \cdot\left(-x^{2}\right)^{3} = x^{12} \) 9. \( 2\left(-x^{4}\right)^{2} \times 4\left(-x^{2}\right)^{4} = 8x^{16} \) 10. \( \left(3 x^{4}\right)^{2}-\left(2 x^{2}\right)^{4} = -7x^{8} \) 11. \( 3\left(-2 a^{3}\right)^{2}-2\left(-3 a^{2}\right)^{3} = 66a^{6} \) 12. \( \left(3 x^{4}\right)^{2} \cdot\left(2 x^{2}\right)^{4} = 144x^{16} \) 13. \( 3\left(-2 a^{3}\right)^{2} \times 2\left(-3 a^{2}\right)^{3} = -648a^{12} \) ### Part (d) 1. \( \left(\frac{a^{4}}{b^{6}}\right)^{2} = \frac{a^{8}}{b^{12}} \) 2. \( \left(\frac{10 x^{3} y}{5 x y^{2}}\right)^{3} = \frac{8x^{6}}{y^{3}} \) 3. \( \left(\frac{-2 p^{4} q^{-2}}{4 p^{-6}}\right)^{3} = -\frac{p^{30}}{8q^{6}} \) 4. \( \left(\frac{3 x^{-5}}{9 x^{7}}\right)^{-2} = 9x^{24} \) 5. \( \left(\frac{2 a^{3} \cdot 4 a^{2}}{8\left(a^{-3}\right)^{2}}\right)^{2} = a^{11} \) 6. \( \left(\frac{x^{2}+x^{2}}{x^{2} \times x^{2}}\right)^{2} = \frac{4}{x^{4}} \) If you have any further questions or need additional assistance, feel free to ask!

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Mind Expander

When working with exponents, it's essential to remember the basic rules: multiplying powers adds their exponents, dividing powers subtracts them, and raising a power to a power multiplies the exponents. For instance, taking \( (x^{-3})^4 \) swiftly transforms to \( x^{-12} \), which you can convert into the positive exponent form as \( \frac{1}{x^{12}} \). Common mistakes occur when dealing with negative exponents, leading to confusion between \( x^{-n} \) and \( \frac{1}{x^n} \). Also, remember to simplify coefficients and fractions separately from the variable parts, as they can often reveal an elegant solution you might initially overlook. So, dive into those equations with confidence!

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad