Responder
Here are the simplified results for each expression, leaving answers with positive exponents:
### Part (c)
1. \( x^{-12} \)
2. \( x^{-10} \)
3. \( x^{4} \)
4. \( -4x^{-9} \)
5. \( 16x^{12} \)
6. \( 2x^{8} \)
7. \( 6x^{8} \)
8. \( x^{12} \)
9. \( 8x^{16} \)
10. \( -7x^{8} \)
11. \( 66a^{6} \)
12. \( 144x^{16} \)
13. \( -648a^{12} \)
### Part (d)
1. \( \frac{a^{8}}{b^{12}} \)
2. \( \frac{8x^{6}}{y^{3}} \)
3. \( -\frac{p^{30}}{8q^{6}} \)
4. \( 9x^{24} \)
5. \( a^{11} \)
6. \( \frac{4}{x^{4}} \)
If you have any further questions or need additional assistance, feel free to ask!
Solución
Simplify the expression by following steps:
- step0: Solution:
\(2\left(x^{4}\right)^{2}\times 4\left(x^{2}\right)^{4}\)
- step1: Multiply the exponents:
\(2\left(x^{4}\right)^{2}\times 4x^{2\times 4}\)
- step2: Multiply the exponents:
\(2x^{4\times 2}\times 4x^{2\times 4}\)
- step3: Multiply the numbers:
\(2x^{8}\times 4x^{2\times 4}\)
- step4: Multiply the numbers:
\(2x^{8}\times 4x^{8}\)
- step5: Multiply the terms:
\(8x^{8}\times x^{8}\)
- step6: Multiply the terms:
\(8x^{8+8}\)
- step7: Add the numbers:
\(8x^{16}\)
Calculate or simplify the expression \( ((x^{2}+x^{2})/(x^{2} * x^{2}))^{2} \).
Simplify the expression by following steps:
- step0: Solution:
\(\left(\frac{\left(x^{2}+x^{2}\right)}{\left(x^{2}\times x^{2}\right)}\right)^{2}\)
- step1: Remove the parentheses:
\(\left(\frac{x^{2}+x^{2}}{x^{2}\times x^{2}}\right)^{2}\)
- step2: Multiply the terms:
\(\left(\frac{x^{2}+x^{2}}{x^{4}}\right)^{2}\)
- step3: Add the terms:
\(\left(\frac{2x^{2}}{x^{4}}\right)^{2}\)
- step4: Divide the terms:
\(\left(\frac{2}{x^{2}}\right)^{2}\)
- step5: Rewrite the expression:
\(\frac{2^{2}}{\left(x^{2}\right)^{2}}\)
- step6: Evaluate the power:
\(\frac{4}{x^{4}}\)
Calculate or simplify the expression \( (a^{4}/b^{6})^{2} \).
Simplify the expression by following steps:
- step0: Solution:
\(\left(\frac{a^{4}}{b^{6}}\right)^{2}\)
- step1: Rewrite the expression:
\(\frac{\left(a^{4}\right)^{2}}{\left(b^{6}\right)^{2}}\)
- step2: Evaluate the power:
\(\frac{a^{8}}{b^{12}}\)
Calculate or simplify the expression \( (-4 x^{-3})^{3} \).
Simplify the expression by following steps:
- step0: Solution:
\(\left(-4x^{-3}\right)^{3}\)
- step1: Determine the sign:
\(-\left(4x^{-3}\right)^{3}\)
- step2: Use the properties of exponents:
\(-4^{3}\left(x^{-3}\right)^{3}\)
- step3: Evaluate the power:
\(-64x^{-9}\)
- step4: Simplify:
\(-\frac{64}{x^{9}}\)
Calculate or simplify the expression \( (x^{-3})^{4} \).
Simplify the expression by following steps:
- step0: Solution:
\(\left(x^{-3}\right)^{4}\)
- step1: Multiply the exponents:
\(x^{-3\times 4}\)
- step2: Multiply the numbers:
\(x^{-12}\)
- step3: Simplify:
\(\frac{1}{x^{12}}\)
Calculate or simplify the expression \( (x^{2})^{-5} \).
Simplify the expression by following steps:
- step0: Solution:
\(\left(x^{2}\right)^{-5}\)
- step1: Multiply the exponents:
\(x^{2\left(-5\right)}\)
- step2: Multiply the numbers:
\(x^{-10}\)
- step3: Simplify:
\(\frac{1}{x^{10}}\)
Calculate or simplify the expression \( (x^{-2})^{-2} \).
Simplify the expression by following steps:
- step0: Solution:
\(\left(x^{-2}\right)^{-2}\)
- step1: Multiply the exponents:
\(x^{-2\left(-2\right)}\)
- step2: Multiply the numbers:
\(x^{4}\)
Calculate or simplify the expression \( (x^{4})^{2}+(x^{2})^{4} \).
Simplify the expression by following steps:
- step0: Solution:
\(\left(x^{4}\right)^{2}+\left(x^{2}\right)^{4}\)
- step1: Multiply the exponents:
\(\left(x^{4}\right)^{2}+x^{2\times 4}\)
- step2: Multiply the exponents:
\(x^{4\times 2}+x^{2\times 4}\)
- step3: Multiply the numbers:
\(x^{8}+x^{2\times 4}\)
- step4: Multiply the numbers:
\(x^{8}+x^{8}\)
- step5: Collect like terms:
\(\left(1+1\right)x^{8}\)
- step6: Add the numbers:
\(2x^{8}\)
Calculate or simplify the expression \( (-2 x^{3})^{4} \).
Simplify the expression by following steps:
- step0: Solution:
\(\left(-2x^{3}\right)^{4}\)
- step1: Determine the sign:
\(\left(2x^{3}\right)^{4}\)
- step2: Use the properties of exponents:
\(2^{4}\left(x^{3}\right)^{4}\)
- step3: Evaluate the power:
\(16x^{12}\)
Calculate or simplify the expression \( 2(x^{4})^{2}+4(x^{2})^{4} \).
Simplify the expression by following steps:
- step0: Solution:
\(2\left(x^{4}\right)^{2}+4\left(x^{2}\right)^{4}\)
- step1: Multiply the exponents:
\(2\left(x^{4}\right)^{2}+4x^{2\times 4}\)
- step2: Multiply the exponents:
\(2x^{4\times 2}+4x^{2\times 4}\)
- step3: Multiply the numbers:
\(2x^{8}+4x^{2\times 4}\)
- step4: Multiply the numbers:
\(2x^{8}+4x^{8}\)
- step5: Collect like terms:
\(\left(2+4\right)x^{8}\)
- step6: Add the numbers:
\(6x^{8}\)
Calculate or simplify the expression \( (10 x^{3} y / (5 x y^{2}))^{3} \).
Simplify the expression by following steps:
- step0: Solution:
\(\left(\frac{10x^{3}y}{5xy^{2}}\right)^{3}\)
- step1: Divide the terms:
\(\left(\frac{2x^{2}}{y}\right)^{3}\)
- step2: Rewrite the expression:
\(\frac{\left(2x^{2}\right)^{3}}{y^{3}}\)
- step3: Evaluate the power:
\(\frac{8x^{6}}{y^{3}}\)
Calculate or simplify the expression \( ((-2 p^{4} q^{-2})/(4 p^{-6}))^{3} \).
Simplify the expression by following steps:
- step0: Solution:
\(\left(\frac{\left(-2p^{4}q^{-2}\right)}{\left(4p^{-6}\right)}\right)^{3}\)
- step1: Remove the parentheses:
\(\left(\frac{-2p^{4}q^{-2}}{4p^{-6}}\right)^{3}\)
- step2: Multiply by \(a^{-n}:\)
\(\left(\frac{-2p^{4}q^{-2}p^{6}}{4}\right)^{3}\)
- step3: Reduce the fraction:
\(\left(-\frac{p^{10}q^{-2}}{2}\right)^{3}\)
- step4: Rewrite the expression:
\(\left(-\frac{p^{10}}{2q^{2}}\right)^{3}\)
- step5: Rewrite the expression:
\(\frac{\left(-p^{10}\right)^{3}}{\left(2q^{2}\right)^{3}}\)
- step6: Evaluate the power:
\(\frac{-p^{30}}{8q^{6}}\)
- step7: Rewrite the fraction:
\(-\frac{p^{30}}{8q^{6}}\)
Calculate or simplify the expression \( 3(-2 a^{3})^{2}-2(-3 a^{2})^{3} \).
Simplify the expression by following steps:
- step0: Solution:
\(3\left(-2a^{3}\right)^{2}-2\left(-3a^{2}\right)^{3}\)
- step1: Multiply the terms:
\(12a^{6}-2\left(-3a^{2}\right)^{3}\)
- step2: Multiply the terms:
\(12a^{6}+54a^{6}\)
- step3: Collect like terms:
\(\left(12+54\right)a^{6}\)
- step4: Add the numbers:
\(66a^{6}\)
Calculate or simplify the expression \( (3 x^{4})^{2}-(2 x^{2})^{4} \).
Simplify the expression by following steps:
- step0: Solution:
\(\left(3x^{4}\right)^{2}-\left(2x^{2}\right)^{4}\)
- step1: Rewrite the expression:
\(9x^{8}-\left(2x^{2}\right)^{4}\)
- step2: Rewrite the expression:
\(9x^{8}-16x^{8}\)
- step3: Collect like terms:
\(\left(9-16\right)x^{8}\)
- step4: Subtract the numbers:
\(-7x^{8}\)
Calculate or simplify the expression \( (3 x^{4})^{2} * (2 x^{2})^{4} \).
Simplify the expression by following steps:
- step0: Solution:
\(\left(3x^{4}\right)^{2}\left(2x^{2}\right)^{4}\)
- step1: Rewrite the expression:
\(9x^{8}\times 16x^{8}\)
- step2: Multiply the numbers:
\(144x^{8}\times x^{8}\)
- step3: Multiply the terms:
\(144x^{16}\)
Calculate or simplify the expression \( (-x^{3})^{2} * (-x^{2})^{3} \).
Simplify the expression by following steps:
- step0: Solution:
\(\left(x^{3}\right)^{2}\left(x^{2}\right)^{3}\)
- step1: Multiply the exponents:
\(\left(x^{3}\right)^{2}x^{2\times 3}\)
- step2: Multiply the exponents:
\(x^{3\times 2}\times x^{2\times 3}\)
- step3: Multiply the numbers:
\(x^{6}\times x^{2\times 3}\)
- step4: Multiply the numbers:
\(x^{6}\times x^{6}\)
- step5: Simplify the expression:
\(x^{6+6}\)
- step6: Add the numbers:
\(x^{12}\)
Calculate or simplify the expression \( (3 x^{-5}/(9 x^{7}))^{-2} \).
Simplify the expression by following steps:
- step0: Solution:
\(\left(\frac{3x^{-5}}{\left(9x^{7}\right)}\right)^{-2}\)
- step1: Evaluate:
\(\left(\frac{3x^{-5}}{9x^{7}}\right)^{-2}\)
- step2: Reduce the fraction:
\(\left(\frac{1}{3x^{12}}\right)^{-2}\)
- step3: Evaluate the power:
\(\left(3x^{12}\right)^{2}\)
- step4: Use the properties of exponents:
\(3^{2}\left(x^{12}\right)^{2}\)
- step5: Evaluate the power:
\(9x^{24}\)
Calculate or simplify the expression \( (2 a^{3} * 4 a^{2})/(8(a^{-3})^{2}) \).
Simplify the expression by following steps:
- step0: Solution:
\(\frac{\left(2a^{3}\times 4a^{2}\right)}{\left(8\left(a^{-3}\right)^{2}\right)}\)
- step1: Remove the parentheses:
\(\frac{2a^{3}\times 4a^{2}}{8\left(a^{-3}\right)^{2}}\)
- step2: Multiply the exponents:
\(\frac{2a^{3}\times 4a^{2}}{8a^{-3\times 2}}\)
- step3: Multiply by \(a^{-n}:\)
\(\frac{2a^{3}\times 4a^{2}\times a^{3\times 2}}{8}\)
- step4: Multiply the numbers:
\(\frac{2a^{3}\times 4a^{2}\times a^{6}}{8}\)
- step5: Multiply:
\(\frac{8a^{11}}{8}\)
- step6: Reduce the fraction:
\(a^{11}\)
Calculate or simplify the expression \( 3(-2 a^{3})^{2} * 2(-3 a^{2})^{3} \).
Simplify the expression by following steps:
- step0: Solution:
\(3\left(-2a^{3}\right)^{2}\times 2\left(-3a^{2}\right)^{3}\)
- step1: Multiply the terms:
\(6\left(-2a^{3}\right)^{2}\left(-3a^{2}\right)^{3}\)
- step2: Multiply the terms:
\(24a^{6}\left(-3a^{2}\right)^{3}\)
- step3: Rewrite the expression:
\(24a^{6}\left(-27a^{6}\right)\)
- step4: Multiply the numbers:
\(-648a^{6}\times a^{6}\)
- step5: Multiply the terms:
\(-648a^{12}\)
Here are the simplified results for each expression, leaving answers with positive exponents:
### Part (c)
1. \( \left(x^{-3}\right)^{4} = \frac{1}{x^{12}} \)
2. \( \left(x^{2}\right)^{-5} = \frac{1}{x^{10}} \)
3. \( \left(x^{-2}\right)^{-2} = x^{4} \)
4. \( \left(-4 x^{-3}\right)^{3} = -\frac{64}{x^{9}} \)
5. \( \left(-2 x^{3}\right)^{4} = 16x^{12} \)
6. \( \left(x^{4}\right)^{2}+\left(x^{2}\right)^{4} = 2x^{8} \)
7. \( 2\left(x^{4}\right)^{2}+4\left(x^{2}\right)^{4} = 6x^{8} \)
8. \( \left(-x^{3}\right)^{2} \cdot\left(-x^{2}\right)^{3} = x^{12} \)
9. \( 2\left(-x^{4}\right)^{2} \times 4\left(-x^{2}\right)^{4} = 8x^{16} \)
10. \( \left(3 x^{4}\right)^{2}-\left(2 x^{2}\right)^{4} = -7x^{8} \)
11. \( 3\left(-2 a^{3}\right)^{2}-2\left(-3 a^{2}\right)^{3} = 66a^{6} \)
12. \( \left(3 x^{4}\right)^{2} \cdot\left(2 x^{2}\right)^{4} = 144x^{16} \)
13. \( 3\left(-2 a^{3}\right)^{2} \times 2\left(-3 a^{2}\right)^{3} = -648a^{12} \)
### Part (d)
1. \( \left(\frac{a^{4}}{b^{6}}\right)^{2} = \frac{a^{8}}{b^{12}} \)
2. \( \left(\frac{10 x^{3} y}{5 x y^{2}}\right)^{3} = \frac{8x^{6}}{y^{3}} \)
3. \( \left(\frac{-2 p^{4} q^{-2}}{4 p^{-6}}\right)^{3} = -\frac{p^{30}}{8q^{6}} \)
4. \( \left(\frac{3 x^{-5}}{9 x^{7}}\right)^{-2} = 9x^{24} \)
5. \( \left(\frac{2 a^{3} \cdot 4 a^{2}}{8\left(a^{-3}\right)^{2}}\right)^{2} = a^{11} \)
6. \( \left(\frac{x^{2}+x^{2}}{x^{2} \times x^{2}}\right)^{2} = \frac{4}{x^{4}} \)
If you have any further questions or need additional assistance, feel free to ask!
Respondido por UpStudy AI y revisado por un tutor profesional

Explicar

Simplifique esta solución