Pregunta
upstudy study bank question image url

Below are two inequalities and the graphs of their lines without the shading. By imagining where the shading should be, identify which point would satisfy BOTH inequalities. \[ y<-\frac{5}{6} x+2 \] \( y>\frac{5}{6} x-4 \)

Ask by Tucker Byrd. in the United States
Feb 24,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

The point \( \left(\frac{18}{5}, -1\right) \) satisfies both inequalities.

Solución

To determine which point satisfies both inequalities, we need to analyze each inequality and understand the regions they represent on a graph. 1. **First Inequality:** \[ y < -\frac{5}{6} x + 2 \] This inequality represents the area below the line \( y = -\frac{5}{6} x + 2 \). The line has a slope of \(-\frac{5}{6}\) and a y-intercept of \(2\). 2. **Second Inequality:** \[ y > \frac{5}{6} x - 4 \] This inequality represents the area above the line \( y = \frac{5}{6} x - 4 \). The line has a slope of \(\frac{5}{6}\) and a y-intercept of \(-4\). ### Steps to Identify the Region: - **Graph the lines:** - For the first line \( y = -\frac{5}{6} x + 2 \): - When \( x = 0 \), \( y = 2 \) (point \( (0, 2) \)). - When \( y = 0 \), \( 0 = -\frac{5}{6} x + 2 \) leads to \( x = \frac{12}{5} \) (point \( \left(\frac{12}{5}, 0\right) \)). - For the second line \( y = \frac{5}{6} x - 4 \): - When \( x = 0 \), \( y = -4 \) (point \( (0, -4) \)). - When \( y = 0 \), \( 0 = \frac{5}{6} x - 4 \) leads to \( x = \frac{24}{5} \) (point \( \left(\frac{24}{5}, 0\right) \)). ### Finding the Intersection: To find the point that satisfies both inequalities, we can find the intersection of the two lines by setting them equal to each other: \[ -\frac{5}{6} x + 2 = \frac{5}{6} x - 4 \] Now, let's solve for \( x \): 1. Add \(\frac{5}{6} x\) to both sides: \[ 2 = \frac{5}{6} x + \frac{5}{6} x - 4 \] \[ 2 = \frac{10}{6} x - 4 \] 2. Add \(4\) to both sides: \[ 6 = \frac{10}{6} x \] 3. Multiply both sides by \(\frac{6}{10}\): \[ x = \frac{36}{10} = \frac{18}{5} \] Now substitute \( x = \frac{18}{5} \) back into one of the original equations to find \( y \): Using the first equation: \[ y = -\frac{5}{6} \left(\frac{18}{5}\right) + 2 = -\frac{18}{6} + 2 = -3 + 2 = -1 \] Thus, the intersection point is \( \left(\frac{18}{5}, -1\right) \). ### Conclusion: The point \( \left(\frac{18}{5}, -1\right) \) satisfies both inequalities, as it lies in the region below the first line and above the second line.

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Beyond the Answer

To find a point that satisfies both inequalities, we need to identify the area where the shaded regions overlap. The first inequality indicates that the solution is below the line \( y = -\frac{5}{6}x + 2 \), while the second means it is above the line \( y = \frac{5}{6}x - 4 \). A good candidate point to test could be \( (0, 0) \). For the first inequality: \( 0 < -\frac{5}{6}(0) + 2 \) simplifies to \( 0 < 2 \), which is true. For the second inequality: \( 0 > \frac{5}{6}(0) - 4 \) simplifies to \( 0 > -4 \), also true. Thus, \( (0, 0) \) satisfies both inequalities!

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad