Pregunta
upstudy study bank question image url

Learn with an example Rewrite the following equation in slope-intercept form. \[ y-10=\frac{1}{4}(x+4) \] Write your answer using integers, proper fractions, and impro,

Ask by Cole Schultz. in the United States
Dec 16,2024

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

The equation in slope-intercept form is \(y=\frac{1}{4}x+11\).

Solución

Convert the equation to the specified form. Rewrite the equation by following steps: - step0: Rewrite in slope-intercept form: \(y-10=\frac{1}{4}\left(x+4\right)\) - step1: Calculate: \(y-10=\frac{1}{4}x+1\) - step2: Move the constant to the right side: \(y=\frac{1}{4}x+11\) The equation \(y-10=\frac{1}{4}(x+4)\) can be rewritten in slope-intercept form as \(y=\frac{1}{4}x+11\).

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Bonus Knowledge

First, let's start by simplifying the given equation: \[ y - 10 = \frac{1}{4}(x + 4) \] To isolate \(y\), you would distribute \(\frac{1}{4}\) across the bracket: \[ y - 10 = \frac{1}{4}x + 1 \] Next, add 10 to both sides to solve for \(y\): \[ y = \frac{1}{4}x + 11 \] And there you have it! In slope-intercept form, the equation is: \[ y = \frac{1}{4}x + 11 \] Now, let’s talk about how this form helps you. The slope-intercept form, \(y = mx + b\), makes it super easy to identify the slope (m) and the y-intercept (b). Here, the slope of \(\frac{1}{4}\) tells you that for every 4 units you move right on the x-axis, you move 1 unit up on the y-axis. This gentle slope indicates a gradual rise. Another fun fact is that this form allows for quick graph plotting! With the y-intercept at 11, you can plot your starting point on the y-axis, then use the slope to find more points. For instance, starting at (0, 11) and following the slope would take you to (4, 12) and then (8, 13). Voila, you’ve got your line!

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad