Now enter those coefficients into the quadratic formula below: \( x=\frac{-6 \pm \sqrt{(6))^{2}-4 \cdot 5} \cdot \sqrt{5}}{2 \cdot \sqrt{10}} \)
Solución de inteligencia artificial de Upstudy
Responder
Solución

¡Inicia sesión para desbloquear respuestas gratis!
Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.

Respondido por UpStudy AI y revisado por un tutor profesional
Bonus Knowledge
Ready for a little coefficient adventure? Your quadratic formula starts with \( x = \frac{-6 \pm \sqrt{6^2 - 4 \cdot 5}}{2 \cdot \sqrt{10}} \). Let's clean it up a bit: The term under the square root simplifies to \( 36 - 20 = 16 \). So now it looks like \( x = \frac{-6 \pm 4}{2 \cdot \sqrt{10}} \). Got it? Now, let's solve! With the “plus” option, you've got \( x = \frac{-6 + 4}{2 \cdot \sqrt{10}} = \frac{-2}{2 \cdot \sqrt{10}} = \frac{-1}{\sqrt{10}} \) and with the “minus” option, you get \( x = \frac{-6 - 4}{2 \cdot \sqrt{10}} = \frac{-10}{2 \cdot \sqrt{10}} = \frac{-5}{\sqrt{10}} \). Who knew quadratic formulas could be this much fun?
