Factor the following expression completely: \( 16 x^{2}-56 x+49=\square \)
Solución de inteligencia artificial de Upstudy
Responder
Solución

¡Inicia sesión para desbloquear respuestas gratis!
Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.

Respondido por UpStudy AI y revisado por un tutor profesional
Bonus Knowledge
To factor the expression \(16x^2 - 56x + 49\), let's start by recognizing that it can be rearranged using the perfect square form. Notice that: 1. The expression is structured as \(Ax^2 - Bx + C\). 2. Here, \(A = 16\), \(B = 56\), and \(C = 49\). We see that \(16\) is \(4^2\), \(49\) is \(7^2\), and we can check to see if the middle term can align with a perfect square trinomial: \[ (4x - 7)^2 = 16x^2 - 2(4x)(7) + 49 = 16x^2 - 56x + 49 \] Thus, \(16x^2 - 56x + 49\) can be completely factored as: \[ (4x - 7)^2 \] So the answer is: \[ (4x - 7)^2 \]
