Pregunta
upstudy study bank question image url

Describe the graph that would be used to solve the equation \( -x^{2}+4=x+2 \) using a system of equations. How will you use the graph to find the solution(s)?

Ask by Bob Johnson. in the United States
Feb 26,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

To solve \( -x^{2} + 4 = x + 2 \) using a graph, plot the parabola \( f(x) = -x^{2} + 4 \) and the line \( g(x) = x + 2 \). The points where they intersect are the solutions.

Solución

To solve the equation \( -x^{2}+4=x+2 \) using a system of equations, we can rewrite it in a form that allows us to graph two separate functions. ### Step 1: Rewrite the equation We can rearrange the equation to set it to zero: \[ -x^{2} - x + 4 - 2 = 0 \] This simplifies to: \[ -x^{2} - x + 2 = 0 \] ### Step 2: Define the functions We can define two functions based on the original equation: 1. \( f(x) = -x^{2} + 4 \) (a downward-opening parabola) 2. \( g(x) = x + 2 \) (a straight line with a slope of 1) ### Step 3: Graph the functions To find the solution(s) to the equation \( -x^{2}+4=x+2 \), we will graph both functions \( f(x) \) and \( g(x) \) on the same coordinate plane. - **Graph of \( f(x) = -x^{2} + 4 \)**: - This is a parabola that opens downwards. - The vertex of the parabola is at the point \( (0, 4) \). - The x-intercepts can be found by setting \( f(x) = 0 \): \[ -x^{2} + 4 = 0 \implies x^{2} = 4 \implies x = \pm 2 \] - Thus, the parabola intersects the x-axis at \( (-2, 0) \) and \( (2, 0) \). - **Graph of \( g(x) = x + 2 \)**: - This is a straight line with a y-intercept at \( (0, 2) \) and a slope of 1. - The line will rise diagonally from left to right. ### Step 4: Finding the solution(s) The solutions to the equation \( -x^{2}+4=x+2 \) correspond to the points where the graphs of \( f(x) \) and \( g(x) \) intersect. To find these intersection points: 1. Plot both functions on the same graph. 2. Identify the points where the two graphs cross each other. ### Conclusion The x-coordinates of the intersection points will give us the solutions to the equation \( -x^{2}+4=x+2 \). We can also find the exact points of intersection algebraically by solving the system of equations: \[ -x^{2} + 4 = x + 2 \] This will yield the same solutions as the graphical method. Would you like me to solve the equation algebraically to find the exact solutions?

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Bonus Knowledge

To solve the equation \( -x^{2}+4=x+2 \) graphically, you would first rewrite it as two separate equations: \( y = -x^2 + 4 \) and \( y = x + 2 \). The graph of \( y = -x^2 + 4 \) is a downward-opening parabola with its vertex at the point (0, 4), while the graph of \( y = x + 2 \) is a straight line with a positive slope that crosses the y-axis at (0, 2). To find the solution(s) of the equation, plot both graphs on the same coordinate plane. The points where the parabola intersects the line represent the values of \( x \) that satisfy the original equation. By identifying these intersection points, you can easily determine the solutions to the equation. Happy graphing!

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad