ACTIVITY 1 [12] Polynomials are named by the highest exponent of the variable as well as the number of terms. example, \( x^{5}-3 x^{2}-1 \) is a quintic trinomial. Quintic is for the exponent 5 , which is the highes while trinomial implies three term. Using the above example, name the following polynomial expressions: \[ \begin{array}{l} 4 x^{2}+x-3 \\ \frac{3}{5} v^{2}\left(3 v^{2}-9\right) \\ k-6 k+12 k^{2}-3 k^{5} \\ -8 \\ 36 m^{6}-9 n^{2} \\ 5-9 y \end{array} \] \( \qquad \) \( \qquad \) \( \qquad \) \( \qquad \) \( \qquad \) \( \qquad \)
Solución de inteligencia artificial de Upstudy
Responder
Solución

¡Inicia sesión para desbloquear respuestas gratis!
Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.

Respondido por UpStudy AI y revisado por un tutor profesional
Extra Insights
The first polynomial, \( 4x^{2}+x-3 \), is a quadratic trinomial since its highest exponent is 2 and there are three terms. Next, the expression \( \frac{3}{5} v^{2}(3 v^{2}-9) \), when expanded, yields \( \frac{9}{5} v^{4} - \frac{27}{5} v^{2} \), which is a quartic binomial due to the highest exponent of 4 and two terms. Moving on, \( k - 6k + 12k^{2} - 3k^{5} \) can be rearranged to \( -3k^{5} + 12k^{2} - 5k \) highlighting that it's a quintic trinomial with a highest exponent of 5 and three terms. The constant term \(-8\) stands alone and is simply a constant polynomial, which is a degree of 0. For \( 36m^{6} - 9n^{2} \), the highest exponent is 6 concerning \( m \), making this a sextic binomial with two terms. Finally, in the expression \( 5 - 9y \), the highest exponent is 1, so it’s a linear binomial. Here’s the final tally: 1. \( 4x^{2}+x-3 \) - Quadratic Trinomial 2. \( \frac{3}{5} v^{2}(3 v^{2}-9) \) - Quartic Binomial 3. \( k - 6k + 12k^{2} - 3k^{5} \) - Quintic Trinomial 4. \(-8\) - Constant Polynomial 5. \( 36m^{6}-9n^{2} \) - Sextic Binomial 6. \( 5-9y \) - Linear Binomial
