Solve \( 4 w(w+3)+15=0 \) by using the quadratic formula. If there is no solution, enter \( \varnothing \). Provide your answer below.
Solución de inteligencia artificial de Upstudy
Responder
Solución

¡Inicia sesión para desbloquear respuestas gratis!
Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.

Respondido por UpStudy AI y revisado por un tutor profesional
Beyond the Answer
To solve the equation \( 4w(w+3)+15=0 \), we first expand and rearrange it: \[ 4w^2 + 12w + 15 = 0. \] Now we can identify the coefficients for the quadratic formula, which is \( w = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \). Here, \( a = 4 \), \( b = 12 \), and \( c = 15 \). 1. **Calculate the discriminant**: \[ b^2 - 4ac = 12^2 - 4 \cdot 4 \cdot 15 = 144 - 240 = -96. \] Since the discriminant is negative, this indicates that there are no real solutions. Thus, the final answer is: \[ \varnothing. \]
