SUBMIT ANSWER 16. [-/1 Points] DETAILS MY NOTES BRECMBC9 10.III.015.MI. If you sign a discount note for \( \$ 5,500 \) at a bank discount rate of \( 7 \% \) for 3 months, what is the effective interest rate (as a \%)? Round to the nearest tenth percent. Need Help? Road II Watch II Master II
Solución de inteligencia artificial de Upstudy
Responder
Solución

¡Inicia sesión para desbloquear respuestas gratis!
Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.

Respondido por UpStudy AI y revisado por un tutor profesional
Beyond the Answer
To find the effective interest rate for a discount note, we first need to calculate the bank discount. The formula for the bank discount \( D \) is: \[ D = \text{Face Value} \times \text{Discount Rate} \times \frac{\text{Time}}{12} \] Plugging in the values: \[ D = 5500 \times 0.07 \times \frac{3}{12} = 5500 \times 0.07 \times 0.25 = 96.875 \] Now, to find the amount you actually receive after the discount, subtract the discount from the face value: \[ \text{Amount Received} = \text{Face Value} - D = 5500 - 96.875 = 5403.125 \] Next, we can find the effective interest paid. Since you actually receive $5403.125, the interest paid is: \[ \text{Interest Paid} = D = 96.875 \] Now, we calculate the effective interest rate \( R \): \[ R = \frac{\text{Interest Paid}}{\text{Amount Received}} \times \frac{12}{\text{Time in Months}} \times 100 \] Substituting our values in for the time in months, we have: \[ R = \frac{96.875}{5403.125} \times \frac{12}{3} \times 100 \] Calculating this gives: \[ R = \frac{96.875}{5403.125} \times 4 \times 100 \approx 0.715 \times 4 \times 100 \approx 2.86\% \] Thus, rounding to the nearest tenth percent, the effective interest rate is approximately \( 2.9\% \).
