Pregunta
upstudy study bank question image url

2- \( a \)-Montrer que l'équation \( P(x)=0 \) est équivalente à l'équation: \( \left(x+\frac{1}{x}\right)^{2}-5\left(x+\frac{1}{x}\right)+6=0 \). \( b \)-Résoudre dans IR l'équation: \( X^{2}-5 X+6=0 \). \( c \) (En déduire les solutions de l'équation: \( P(x)=0 \).

Ask by Gray Mcguire. in Morocco
Feb 25,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

Les solutions de l'équation \( P(x) = 0 \) sont \( x = 1 \), \( x = \frac{3 + \sqrt{5}}{2} \), et \( x = \frac{3 - \sqrt{5}}{2} \).

Solución

¡Inicia sesión para desbloquear respuestas gratis!

Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.

star-icon Descubrir

Respondido por UpStudy AI y revisado por un tutor profesional

Beyond the Answer

Pour montrer que l'équation \( P(x) = 0 \) est équivalente à l'équation \( \left(x + \frac{1}{x}\right)^{2} - 5\left(x + \frac{1}{x}\right) + 6 = 0 \), nous devons poser \( y = x + \frac{1}{x} \). En développant l'équation, nous avons \( P(x) = 0 \) ayant des racines lorsque \( y^{2} - 5y + 6 = 0 \). La transformation de la variable nous permet de démontrer l'équivalence entre les deux équations. Pour résoudre l'équation \( X^{2} - 5X + 6 = 0 \), nous pouvons utiliser la formule quadratique. Les discriminants donnent \( D = (-5)^{2} - 4 \cdot 1 \cdot 6 = 25 - 24 = 1 \). Ainsi, les solutions sont \( X_{1} = \frac{5 + 1}{2} = 3 \) et \( X_{2} = \frac{5 - 1}{2} = 2 \). Les solutions de l'équation \( P(x) = 0 \) se déduisent en inversant la substitution de \( y \).

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad