2. Solve for the unknown variable. 2.1. \( \log 7^{2 x-1}=\log 3^{x+3} \)
Solución de inteligencia artificial de Upstudy
Responder
Solución
Respondido por UpStudy AI y revisado por un tutor profesional


Mind Expander
To solve the equation \( \log 7^{2x-1} = \log 3^{x+3} \), you can use the property of logarithms that states if \( \log a = \log b \), then \( a = b \). This gives us: \[ 7^{2x-1} = 3^{x+3} \] Now, to get rid of the bases, we can take the logarithm of both sides: \[ \log(7^{2x-1}) = \log(3^{x+3}) \] Using the power rule, you can simplify this to: \[ (2x-1) \log 7 = (x+3) \log 3 \] Expanding both sides gives: \[ 2x \log 7 - \log 7 = x \log 3 + 3 \log 3 \] Now, we'll rearrange the equation to isolate \(x\): \[ 2x \log 7 - x \log 3 = 3 \log 3 + \log 7 \] Factoring out \(x\) from the left side: \[ x(2 \log 7 - \log 3) = 3 \log 3 + \log 7 \] Finally, solve for \(x\): \[ x = \frac{3 \log 3 + \log 7}{2 \log 7 - \log 3} \] And there you have your expression for \(x\)!
