Pregunta
upstudy study bank question image url

2.1. Consider the series: \( 125(x-3)+25(x-3)^{2}+5(x-3)^{3}+\cdots \) 2.1.1 For which value(s) of \( x \) will the series be conivergent? 2.1.2 Determine the sum to infinity of the series if \( x=7 \) 2.2. The sum of the first \( n \) terms of a series is given by \( S_{n}=2\left(3^{n}-1\right) \) 2.2.1. Determine the sum of the first 12 terms. 2.2.2. Determine the \( 12^{\text {th }} \) terme \( ~ \)

Ask by Owen Summers. in South Africa
Feb 25,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

2.1.1. The series converges for –2 < x < 8. 2.1.2. When x = 7, the sum to infinity is 2500. 2.2.1. The sum of the first 12 terms is 1,062,880. 2.2.2. The 12th term is 708588.

Solución

2.1. We are given the series   125(x – 3) + 25(x – 3)² + 5(x – 3)³ + ⋯ Notice that the ratio between consecutive terms is   [25(x – 3)²]⁄[125(x – 3)] = (1/5)(x – 3) and similarly for the other terms. Hence, the series is geometric with   First term, a = 125(x – 3)   Common ratio, r = (x – 3)/5 2.1.1. A geometric series converges when |r| < 1. Therefore, we require   |(x – 3)/5| < 1  ⟹  |x – 3| < 5 This inequality is satisfied when   –5 < x – 3 < 5  ⟹  –2 < x < 8 Thus, the series converges for x between –2 and 8. 2.1.2. To find the sum to infinity when x = 7, first substitute x = 7 into the formulas for a and r:   a = 125(7 – 3) = 125·4 = 500   r = (7 – 3)/5 = 4/5 Since |4/5| < 1, the sum to infinity is given by   S∞ = a/(1 – r) = 500/(1 – 4/5) = 500/(1/5) = 500·5 = 2500. 2.2. We are given that the sum of the first n terms of a series is   Sₙ = 2(3ⁿ – 1). 2.2.1. To find the sum of the first 12 terms, substitute n = 12:   S₁₂ = 2(3¹² – 1). We compute 3¹². Since 3¹² = 531441, it follows that   S₁₂ = 2(531441 – 1) = 2(531440) = 1,062,880. 2.2.2. The 12th term, a₁₂, is the difference between S₁₂ and S₁₁ (since Sₙ gives the sum of the first n terms):   a₁₂ = S₁₂ – S₁₁. Now, compute S₁₁ by substituting n = 11:   S₁₁ = 2(3¹¹ – 1). Since 3¹¹ = 177147, we have   S₁₁ = 2(177147 – 1) = 2(177146) = 354292. Thus,   a₁₂ = 1,062,880 – 354292 = 708588. Alternatively, we can derive a formula for the nth term. Since   aₙ = Sₙ – Sₙ₋₁ = 2(3ⁿ – 1) – 2(3ⁿ⁻¹ – 1) = 2(3ⁿ – 3ⁿ⁻¹) = 2·3ⁿ⁻¹(3 – 1),   aₙ = 4·3ⁿ⁻¹. Then the 12th term is   a₁₂ = 4·3¹¹ = 4·177147 = 708588. Summary of Answers:  • 2.1.1. The series converges for –2 < x < 8.  • 2.1.2. When x = 7, the sum to infinity is 2500.  • 2.2.1. The sum of the first 12 terms is 1,062,880.  • 2.2.2. The 12th term is 708588.

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

The Deep Dive

The series given is a geometric series with a common ratio. For this specific series, it takes the form \( a + ar + ar^2 + \ldots \), where \( a = 125(x-3) \) and the common ratio \( r = \frac{(x-3)}{5} \). For convergence, the absolute value of the common ratio must be less than 1. Therefore, the series converges when \( |(x-3)/5| < 1 \), which simplifies to \( 2 < x < 8 \). Now, substituting \( x = 7 \) into the series, we first find \( a = 125(7-3) = 500 \) and \( r = \frac{(7-3)}{5} = \frac{4}{5} \). The sum to infinity of a geometric series can be calculated using the formula \( \frac{a}{1-r} \). Thus, the sum becomes \( \frac{500}{1 - \frac{4}{5}} = \frac{500}{\frac{1}{5}} = 2500 \). To find the sum of the first 12 terms given by \( S_n = 2(3^n - 1) \), we substitute \( n = 12 \): \( S_{12} = 2(3^{12} - 1) = 2(531441 - 1) = 2 \times 531440 = 1062880 \). For the \( 12^{\text{th}} \) term of a geometric series, we can use \( T_n = ar^{n-1} \). Here, \( a = 2 \) and \( r = 3 \), yielding \( T_{12} = 2 \times 3^{11} = 2 \times 177147 = 354294 \).

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad