Pregunta
upstudy study bank question image url

The rectangle below has an area of \( x^{2}-6 x-7 \) square meters and width of \( x-7 \) meters. What expression represents the length of the rectangle?

Ask by Valdez Joseph. in the United States
Feb 27,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

The length of the rectangle is \( x + 1 \) meters.

Solución

We are given the area of the rectangle as x² - 6x - 7 square meters and the width as x - 7 meters. The area (A) of a rectangle is calculated by A = length × width. So if L is the length, then:   L = (Area) / (Width) = (x² - 6x - 7) / (x - 7) To simplify this expression, factor the quadratic numerator:   x² - 6x - 7 = (x - 7)(x + 1) Plug this back into the expression for L:   L = [(x - 7)(x + 1)] / (x - 7) Since x - 7 appears in both the numerator and denominator, we cancel it out (provided x ≠ 7):   L = x + 1 Thus, the expression for the length of the rectangle is x + 1.

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

The Deep Dive

To find the length of the rectangle, we can use the formula for the area of a rectangle, which is given by the area equal to width multiplied by length. Here, we have the area as \( x^{2} - 6x - 7 \) square meters and the width as \( x - 7 \) meters. We can set up the equation: \[ \text{Length} \times (x - 7) = x^{2} - 6x - 7 \] Now, to find the length, we can divide the area by the width: \[ \text{Length} = \frac{x^{2} - 6x - 7}{x - 7} \] Next, we can factor the area expression. The quadratic \( x^{2} - 6x - 7 \) factors into \( (x - 7)(x + 1) \). Thus, we simplify: \[ \text{Length} = \frac{(x - 7)(x + 1)}{(x - 7)} \] Assuming \( x \neq 7 \), we can cancel \( (x - 7) \) from the numerator and denominator, yielding: \[ \text{Length} = x + 1 \] So, the expression that represents the length of the rectangle is \( x + 1 \) meters. Now onto something fun: Did you know that rectangles have been intriguing mathematicians for centuries? The concept of area, perimeter, and the relationships within a rectangle were even studied by ancient civilizations, like the Egyptians, who used simple geometry to build their pyramids! For a practical application, understanding how to calculate the length of a rectangle is super useful in everyday tasks! Whether you're arranging furniture, planning a garden, or designing layouts for a room, knowing how to manipulate these dimensions can help you optimize space effectively!

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad