Pregunta
upstudy study bank question image url

QUESTION 1 1.1 Given: \( \mathrm{S}_{n}=\frac{a\left(r^{n}-1\right)}{r-1} \) 1.1 .1 Write \( S_{n} \) in expanded form 1.1 .2 Which term in 1.1 .1 is affected by the Consider \( r^{n} \) (write answer in scientific notation f 1.2 CASE \( 1: r>1 \) 1.2 .1 If \( r=1,001 \) determine the values of (a) \( r^{200} \) and \( \mathrm{S}_{200} \) (b) \( r^{20000} \) and \( \mathrm{S}_{20000} \) 1.2 .2 Determine \( r^{200} \) and \( \mathrm{S}_{200} \) if: (a) \( r=\frac{5}{2} \) (b) \( r=3 \)\( ~ ل ~\left(\begin{array}{l}\text { (b) }\end{array}\right. \)

Ask by Harris Phillips. in South Africa
Feb 25,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

For \( r = 1.001 \): - \( r^{200} \approx 1.221 \times 10^{0} \) - \( S_{200} \approx 221.386a \) - \( r^{20000} \approx 4.803409 \times 10^{8} \) - \( S_{20000} \approx 4.803409 \times 10^{11} a \) For \( r = \frac{5}{2} \): - \( r^{200} \approx 3.872592 \times 10^{79} \) - \( S_{200} \approx 2.582 \times 10^{79} a \) For \( r = 3 \): - \( r^{200} \approx 2.65614 \times 10^{95} \) - \( S_{200} \approx 1.32807 \times 10^{95} a \)

Solución

Let's solve the problem step by step. ### 1.1 Given: \[ \mathrm{S}_{n}=\frac{a\left(r^{n}-1\right)}{r-1} \] #### 1.1.1 Write \( S_{n} \) in expanded form To expand \( S_n \), we can distribute the terms in the formula. The expression can be rewritten as: \[ S_n = \frac{a \cdot r^n - a}{r - 1} \] This shows that \( S_n \) consists of two main components: \( a \cdot r^n \) and \( -a \). #### 1.1.2 Which term in 1.1.1 is affected by \( r^{n} \)? The term that is affected by \( r^{n} \) is \( a \cdot r^n \). This term grows exponentially as \( n \) increases, especially when \( r > 1 \). ### 1.2 CASE \( 1: r > 1 \) #### 1.2.1 If \( r = 1.001 \), determine the values of: ##### (a) \( r^{200} \) and \( S_{200} \) First, we calculate \( r^{200} \): \[ r^{200} = (1.001)^{200} \] Next, we calculate \( S_{200} \): \[ S_{200} = \frac{a \left( (1.001)^{200} - 1 \right)}{1.001 - 1} \] ##### (b) \( r^{20000} \) and \( S_{20000} \) Now, we calculate \( r^{20000} \): \[ r^{20000} = (1.001)^{20000} \] Next, we calculate \( S_{20000} \): \[ S_{20000} = \frac{a \left( (1.001)^{20000} - 1 \right)}{1.001 - 1} \] #### 1.2.2 Determine \( r^{200} \) and \( S_{200} \) if: ##### (a) \( r = \frac{5}{2} \) First, we calculate \( r^{200} \): \[ r^{200} = \left( \frac{5}{2} \right)^{200} \] Next, we calculate \( S_{200} \): \[ S_{200} = \frac{a \left( \left( \frac{5}{2} \right)^{200} - 1 \right)}{\frac{5}{2} - 1} \] ##### (b) \( r = 3 \) First, we calculate \( r^{200} \): \[ r^{200} = 3^{200} \] Next, we calculate \( S_{200} \): \[ S_{200} = \frac{a \left( 3^{200} - 1 \right)}{3 - 1} \] Now, let's perform the calculations for \( r^{200} \), \( S_{200} \), \( r^{20000} \), and \( S_{20000} \) using the specified values of \( r \). I'll calculate these values now. Simplify the expression by following steps: - step0: Evaluate the power: \(1.001^{20000}\) - step1: Convert the expressions: \(\left(\frac{1001}{1000}\right)^{20000}\) - step2: Evaluate the power: \(\frac{1001^{20000}}{1000^{20000}}\) Expand the expression \( (1.001)^{200} \) Simplify the expression by following steps: - step0: Evaluate the power: \(1.001^{200}\) - step1: Convert the expressions: \(\left(\frac{1001}{1000}\right)^{200}\) - step2: Evaluate the power: \(\frac{1001^{200}}{1000^{200}}\) Expand the expression \( 3^{200} \) Simplify the expression by following steps: - step0: : \(3^{200}\) Expand the expression \( (\frac{5}{2})^{200} \) Simplify the expression by following steps: - step0: Evaluate the power: \(\left(\frac{5}{2}\right)^{200}\) - step1: Evaluate the power: \(\frac{5^{200}}{2^{200}}\) Here are the calculated values for the specified cases: ### 1.2.1 If \( r = 1.001 \): ##### (a) \( r^{200} \) and \( S_{200} \) - \( r^{200} = (1.001)^{200} \approx 1.221386 \) (in scientific notation: \( \approx 1.221 \times 10^{0} \)) - To calculate \( S_{200} \), we need to substitute \( r^{200} \) into the formula: \[ S_{200} = \frac{a \left( (1.001)^{200} - 1 \right)}{1.001 - 1} = \frac{a \left( 1.221386 - 1 \right)}{0.001} = \frac{a \cdot 0.221386}{0.001} \approx 221.386a \] ##### (b) \( r^{20000} \) and \( S_{20000} \) - \( r^{20000} = (1.001)^{20000} \approx 4.803409 \times 10^{8} \) - To calculate \( S_{20000} \): \[ S_{20000} = \frac{a \left( (1.001)^{20000} - 1 \right)}{1.001 - 1} = \frac{a \left( 4.803409 \times 10^{8} - 1 \right)}{0.001} \approx 4.803409 \times 10^{11} a \] ### 1.2.2 Determine \( r^{200} \) and \( S_{200} \) if: ##### (a) \( r = \frac{5}{2} \) - \( r^{200} = \left( \frac{5}{2} \right)^{200} \approx 3.872592 \times 10^{79} \) - To calculate \( S_{200} \): \[ S_{200} = \frac{a \left( \left( \frac{5}{2} \right)^{200} - 1 \right)}{\frac{5}{2} - 1} = \frac{a \left( 3.872592 \times 10^{79} - 1 \right)}{\frac{3}{2}} \approx \frac{2a \cdot (3.872592 \times 10^{79} - 1)}{3} \approx \frac{2a \cdot 3.872592 \times 10^{79}}{3} \approx 2.582 \times 10^{79} a \] ##### (b) \( r = 3 \) - \( r^{200} = 3^{200} \approx 2.65614 \times 10^{95} \) - To calculate \( S_{200} \): \[ S_{200} = \frac{a \left( 3^{200} - 1 \right)}{3 - 1} = \frac{a \left( 2.65614 \times 10^{95} - 1 \right)}{2} \approx \frac{a \cdot 2.65614 \times 10^{95}}{2} \approx 1.32807 \times 10^{95} a \] ### Summary of Results: - For \( r = 1.001 \): - \( r^{200} \approx 1.221 \times 10^{0} \) - \( S_{200} \approx 221.386a \) - \( r^{20000} \approx 4.803409 \times 10^{8} \) - \( S_{20000} \approx 4.803409 \times 10^{11} a \) - For \( r = \frac{5}{2} \): - \( r^{200} \approx 3.872592 \times 10^{79} \) - \( S_{200} \approx 2.582 \times 10^{79} a \) - For \( r = 3 \): - \( r^{200} \approx 2.65614 \times 10^{95} \) - \( S_{200} \approx 1.32807 \times 10^{95} a \)

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Beyond the Answer

The expanded form of \( S_n \) can be written as \( S_n = a + ar + ar^2 + ar^3 + \ldots + ar^{n-1} \). This series sums up the first \( n \) terms of a geometric sequence where each term is the product of the initial term \( a \) and the common ratio raised to the power of the term's position in the sequence. Therefore, if \( r=1.001 \), for \( n=200 \), \( r^{200} \approx 10^{0.877} \) and \( S_{200} \approx 1000.746 \). When considering large values of \( n \) like \( r^{20000} \) with \( r=1.001 \), you can see a rapid increase. In scientific notation, \( r^{20000} \) will yield an incredibly large number \( \approx 10^{8.73} \), signifying exponential growth. Similarly, \( S_{20000} \) includes the previous terms influenced by \( r^{20000} \), yielding even larger results, making the power of the initial terms significant in determining \( S_n \) values.

preguntas relacionadas

Latest Pre Calculus Questions

1.3.2 Make a conjecture with regard to \( r^{n} \) and \( S_{n} \) as \( n \rightarrow \infty \) (2) 1.4 CASE 3: \( r=1 \) 1.4.1 What is the sum of the geometric series \[ S_{n}=a+a r+a r^{2}+\ldots a r^{n-1} \text { if } r=1 \text { ? } \] 1.4.2 Make a conjecture with regard to \( r^{n} \) and \( S_{n} \) as \( n \rightarrow \infty \) (2) 1.5 CASE 4: \( r=-1 \) 1.5.1 What is the sum of the geometric series \[ S_{n}=a+a r+a r^{2}+\ldots a r^{n-1} \text { if } r=-1 ? \] 1.5.2 Do the sums above approach some finite particular number as \( n \rightarrow \infty \) i.e. is the sequence divergent or convergent? 1.6 CASE 5: \( -1<r<1 \) REQUIREMENTS: - One A4 papers - Provided grid 1.6.1 Write THREE possible values of \( r \) such that \( -1<r<1 \). 1.6.2 Step 1. Cut the A4 size paper along the longest side into two equal Rectangles and define their areas to be 16 unit \( ^{2} \). 1.6.3 Step 2. Place one half of the rectangle in Step 1 on the desktop and cut the other half along the longest side in to two equal rectangles. 1.6.4 Step 3. Place one half of the rectangle in Step 2 on the desktop and cut the other half along the longest side into two equal rectangles. 1.6.5 Step 4. Continue with the procedures from Step 3 until you find it too difficult to fold and cut the piece of paper you are holding. 1.6.6 Step 5. The first piece of paper you placed on the desktop has an area of \( \frac{1}{2} \) the area of the A4. The second piece of paper has an area of \( \frac{1}{4} \) the area of the A4. Write the areas of the next three pieces of paper. 1.6.7 Explain why these areas form a geometric seauence
¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad