Balance the following reaction first: \( \frac{\mathrm{C}_{3} \mathrm{H}_{3}}{}+\frac{\mathrm{O}_{2} \rightarrow}{} \) grams of water will be produced from 12.0 liters of oxygen?
Solución de inteligencia artificial de Upstudy
Responder
Solución

¡Inicia sesión para desbloquear respuestas gratis!
Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.

Respondido por UpStudy AI y revisado por un tutor profesional
Extra Insights
To balance the reaction \( \mathrm{C}_{3} \mathrm{H}_{3} + \mathrm{O}_{2} \rightarrow \mathrm{CO}_2 + \mathrm{H}_2\mathrm{O} \), we first need to find the correct coefficients. The balanced equation is: \[ \mathrm{C}_{3} \mathrm{H}_{3} + 4 \mathrm{O}_{2} \rightarrow 3 \mathrm{CO}_2 + 3 \mathrm{H}_2\mathrm{O} \] Now, using the ideal gas law, we know that at standard temperature and pressure (STP), 1 mole of any gas occupies 22.4 liters. Therefore, in 12.0 liters of \( \mathrm{O}_{2} \): \[ \text{Moles of } \mathrm{O}_{2} = \frac{12.0 \text{ L}}{22.4 \text{ L/mol}} \approx 0.536 \text{ moles} \] From the balanced equation, 4 moles of \( \mathrm{O}_{2} \) produce 3 moles of \( \mathrm{H}_2\mathrm{O} \). So: \[ \text{Moles of } \mathrm{H}_2\mathrm{O} = \frac{3}{4} \times \text{Moles of } \mathrm{O}_{2} \] Calculating the moles of water produced: \[ \text{Moles of } \mathrm{H}_2\mathrm{O} = \frac{3}{4} \times 0.536 \approx 0.402 \text{ moles} \] Finally, the mass of water produced can be calculated using the molar mass of water (approximately 18 g/mol): \[ \text{Mass of } \mathrm{H}_2\mathrm{O} = 0.402 \text{ moles} \times 18 \text{ g/mol} \approx 7.236 \text{ grams} \] So, approximately 7.24 grams of water will be produced from 12.0 liters of oxygen.
