Test the claim about the difference between two population means \( \mu_{1} \) and \( \mu_{2} \) at the level of significance \( \alpha \). Assume the samples are random and independent, and the populations are normally distributed. Claim: \( \mu_{1} \leq \mu_{2} ; \alpha=0.01 \). Assume \( \sigma_{1}^{2} \neq \sigma_{2}^{2} \) Sample statistics: \( \bar{x}_{1}=2412, s_{1}=174, n_{1}=13 \) and \[ \bar{x}_{2}=2292, s_{2}=55, n_{2}=11 \] \( \begin{array}{ll}\text { A. } H_{0}: \mu_{1}>\mu_{2} & \\ H_{a}: \mu_{1} \leq \mu_{2} & \text { B. } H_{0}: \mu_{1} \neq \mu_{2} \\ \text { C. } H_{0}: \mu_{1} \leq \mu_{2} & H_{a}: \mu_{1}=\mu_{2} \\ H_{a}: \mu_{1}>\mu_{2} & \text { D. } H_{0}: \mu_{1}<\mu_{2} \\ H_{a}: \mu_{1} \geq \mu_{2}\end{array} \) \( \begin{array}{ll}H_{0}: \mu_{1} \geq \mu_{2} & \text { F. } H_{0}: \mu_{1}=\mu_{2} \\ H_{a}: \mu_{1}<\mu_{2} & H_{a}: \mu_{1} \neq \mu_{2}\end{array} \)
Solución ThothAI de Upstudy
Respuesta rápida
Solución paso a paso
Introduce tu pregunta aquí…