3- (a) Let \( \mathbf{F}=f(r) \mathbf{e}_{\theta} \) be a vector field written in cylindrical coordinates. Draw \( \mathbf{F} \) on the \( z=0 \) plane for \( f(r)=r^{2} \). Find the curl of \( \mathbf{F} \) for generic \( f(r) \). When does the curl vanish? Does it match your intuition about curl? (b) Repeat part (a) for \( \mathbf{F}=f(r) \mathbf{e}_{r} \). 4- The vector field \( \mathbf{F}=\hat{\mathbf{r}}=\mathbf{e}_{1} \) (in polar coordinates) has constant magnitude, but not constant direction. So its derivative is non-zero. What are \( \boldsymbol{\nabla} \cdot \mathbf{F} \) and \( \boldsymbol{\nabla} \times \mathbf{F} \) ? Repeat for \( \mathbf{F}=\hat{\boldsymbol{\theta}}=\mathbf{e}_{2} \).
Solución ThothAI de Upstudy
Respuesta rápida
Solución paso a paso
Introduce tu pregunta aquí…