Morgan Jimenez
02/08/2024 · Escuela primaria

\(\frac { x^ 2} { \sqrt { x^ 2- c^ 2} } = \frac { c^ 2} { \sqrt { x^ 2- c^ 2} } + 39\) In the given equation, c is a positive constant. Which of the following is one of the solutions to the given equation?A. \(- c\) B. \(- c^ 2- 39^ 2\) C. \(- \sqrt { 39^ 2- c^ 2} \) D. \(- \sqrt { c^ 2+ 39^ 2} \) 

Solución de tutoría real

Respuesta verificada por el tutor

Respuesta rápida

\(D. - \sqrt { c^ 2 + 39^ 2} \)

 

Solución paso a paso

To solve the given equation:
\[\frac { x^ 2} { \sqrt { x^ 2 - c^ 2} } = \frac { c^ 2} { \sqrt { x^ 2 - c^ 2} } + 39\]
First, we can simplify the equation by multiplying both sides by \(\sqrt { x^ 2 - c^ 2} \):
\[x^ 2 = c^ 2 + 39\sqrt { x^ 2 - c^ 2} \]
Next, isolate the square root term:
\[x^ 2 - c^ 2 = 39\sqrt { x^ 2 - c^ 2} \]
Let \(y = \sqrt { x^ 2 - c^ 2} \). Then, \(y^ 2 = x^ 2 - c^ 2\), so the equation becomes:
\[y^ 2 = 39y\]
This simplifies to:
\[y^ 2 - 39y = 0\]
Factor out \(y\):
\[y( y - 39) = 0\]
So, \(y = 0\) or \(y = 39\). Since \(y = \sqrt { x^ 2 - c^ 2} \), we have:

 

  1. \(y = 0\):
    \[\sqrt { x^ 2 - c^ 2} = 0 \implies x^ 2 - c^ 2 = 0 \implies x = \pm c\]
    Since \(c\) is positive, \(x = c\) or \(x = - c\).
  2. \(y = 39\):
    \[\sqrt { x^ 2 - c^ 2} = 39 \implies x^ 2 - c^ 2 = 39^ 2 \implies x^ 2 = 39^ 2 + c^ 2 \implies x = \pm \sqrt { 39^ 2 + c^ 2} \]
    Among the options given, one of the solutions is:
    D. \(- \sqrt { c^ 2 + 39^ 2} \)

 

Supplemental Knowledge

Solving equations containing radicals requires isolating their radical expression and then squaring both sides of an equation to eliminate it, usually using multiple steps and careful algebraic manipulation. Furthermore, extraneous solutions might occur as you square both sides - an additional precaution must also be taken here in case any extraneous solutions surface when trying to square both sides at the same time.

 

From Concepts to Reality

Consider that when designing a roller coaster you must accurately calculate its hill height based on cart speed - solving for this equation accurately ensures safety and functionality for riders and the ride itself.

 

Solving algebraic equations can be challenging but also incredibly rewarding! To further enhance your understanding and practice solving similar problems, check out UpStudy’s Algebra calculator. Our Algebra calculator is designed to help you tackle complex equations with ease and accuracy.

UpStudy offers comprehensive tools tailored for students and professionals alike. Whether you're preparing for exams or looking to deepen your math skills, UpStudy provides resources that make learning engaging and effective.

Join UpStudy today and unlock your full potential in mastering algebra!

Revisado y aprobado por el equipo de tutoría de UpStudy
Estudio de ThothAI
Autodesarrollado y en constante mejora
El producto Thoth AI se actualiza y optimiza constantemente.
Cubre todos los temas principales
Capaz de manejar tareas de matemáticas, química, biología, física y más.
Instantáneo y preciso
Proporciona soluciones y orientación inmediatas y precisas.
Probar ahora
Tutores
AI
10x
La forma más rápida deObtenga respuestas y soluciones
Por texto

Introduce tu pregunta aquí…

Por imagen
Volver a cargar
Archivos subidos
xxxx.png0%
Enviar
📸 EL ESTUDIO PUEDE SER UNA VERDADERA LUCHA
Por qué no UpStudy It?
Seleccione su plan a continuación
Prima

Puedes disfrutar

  • Paso a paso explicaciones
  • Experto 24/7 tutores en vivo
  • Ilimitado número de preguntas
  • Sin interrupciones
  • Acceso completo para responder y
    solución
  • Acceso completo para chat en PDF, chat en UpStudy, chat de navegación
Básico
  • Limitado Soluciones