Q:
The graph of a function \( f \) is shown below.
Find one value of \( x \) for which \( f(x)=4 \) and find \( f(-2) \).
Q:
Match the polynomial on the left with the appropriately factored expression on the right.
\[ \begin{array}{l}4 x^{2}+12 x \\ \qquad \begin{array}{l}4 x^{2}+x+12 x+3 \\ 4 x(x+4)\end{array} \\ (x+1)(4 x+3) \\ (4 x+1)(x+3)\end{array} \]
Q:
1. A funçâo abaixo representa:
\[ f(x)=a x^{2}+b x+c \]
a) uma funçào do \( 1^{\circ} \) Grau
b) uma função exponencial
c) uma função quadrática
d) uma funçào biquadrada
Q:
Choose the correct option:
Calculate the following and simplify your answer:
\[ 1 \frac{1}{2} x-\frac{2}{3} x \]
\( \frac{5}{6} x \)
\( \frac{2}{3} x \)
\( x \)
Q:
4) Write the statement in logarithmic form: \( 10^{a}=5 \)
a) \( 0 \log 5=a \)
b) \( 5=\log _{a} 10 \)
c) \( \log \left(\frac{1}{2}\right)=a \)
d) \( \log _{a} 5=\frac{1}{10} \)
Q:
1) Factorise the following
a) \( 6 x-2 \)
b) \( 8 x+14 \)
c) \( 6 x+9 \)
d) \( 10 x-5 \)
e) \( 12 x+18 \)
Q:
4) Write the statement in logarithmic form: \( 10^{*}=5 \)
a) \( 0 \log 5=a \)
b) \( 5=\log _{a} 10 \)
c) \( \log _{\left(\frac{1}{2}\right)=a} \)
d) \( \log _{a} 5=\frac{1}{10} \)
Q:
3) Solve for \( x: 9^{4 x+2}=27 \)
a) \( x=-\frac{1}{8} \)
b) \( x=-\frac{1}{2} \)
c) \( x=\frac{1}{8} \)
d) \( x=\frac{1}{2} \)
Q:
A ball is thrown from an initial height of 4 feet with an initial upward velocity of \( 31 \mathrm{f} / \mathrm{s} \). The ball's height \( h \) (in feet) after \( t \) seconds is given by the following.
\[ h=4+31 t-16 t^{2} \]
Find all values of \( t \) for which the ball's height is 18 feet.
Round your answer(s) to the nearest hundredth.
(If there is more than one answer, use the "or" button.)
Q:
4) \( (3 x-1)^{2}-8(x+1)^{2}=(x+2)(x-2) \)
2) \( x(x-2)-8=(x+2)(x-4)] \)
Pon a prueba tus conocimientos sobre Álgebra!
Seleccione la respuesta correcta y verifique su respuesta
Tutores
AI
10x
La forma más rápida deObtenga respuestas y soluciones
Por texto
Introduce tu pregunta aquí…
Por imagen
Volver a cargar
Enviar