Q:
Graph the rational function.
\[ f(x)=\frac{7}{x-1} \]
Start by drawing the vertical and horizontal asymptotes. Then plot two points on each piece of the graph. Finally, click on the graph-a-function button.
Q:
3. Let \( r=\frac{a \sin 2 \theta}{\cos ^{3} \theta-\sin ^{3} \theta} \)
a. Use a CAS to graph this polar equation when \( a=4 \) using a polar graph AND provide
a screenshot of your graph.
b. Determine the Cartesian equation for \( r \) when \( a=4 \). ( 6 pts.)
Q:
Ejercicio 2. Construir la gráfica de la función \( f(x)=-2 x^{2}+5 \), estableciendo su dominio, rango,
las coordenadas de su vérice y sus raices.
Q:
\begin{tabular}{l}46 Question 10 of 12 \\ \hline \( \begin{array}{l}\text { Begin by graphing } f(x)=\log x \text {. Use transformations of this graph to graph the } \\ \text { given function. Graph and give the equation of the asymptote. Use the graphs to } \\ \text { determine the function's domain and range. }\end{array} \) \\ \( g(x)=\log (x-2) \)\end{tabular}
Q:
Let \( f(x)=2-x^{2} \) and \( g(x)=\sqrt{x} \). In each purt, give the
formula for the composition and state the corresponding
domain.
(a) \( f \circ g:- \)
(b) \( g \circ f:= \)
Q:
Find the domain and range of each of the following functions:
i. \( f(x, y)=3 x+5 y+2 \)
ii. \( g(x, y)=\sqrt{9-x^{2}-y^{2}} \)
Q:
\( y = 2 ^ { \sqrt { x - 1 } } \quad [ x \geq 1 \)
Q:
8. a) Skico grafikun e funksionit \( f: y=(x-2)\left(x^{2}-9\right) \) duke gjetur më parë
pikëprerjet me boshtet koordinative. \( (2 \) pikë \( ) \)
b) Me ndihmën e grafikut të funksionit \( f \), skico grafikun e funksionit
\( -f(x) \) dhe \( f(2 x) . \quad(2 \) pikë \( ) \)
Q:
1. Representen las siguientes fund
\( f(x)=-x^{3} \)
Q:
The range of the function \( f: f(x)=\frac{4-x^{2}}{x+2} \) is \( \ldots \ldots \ldots \)
\( \begin{array}{llll}R-\{4\} & \text { b) } R-\{-2,2\} & \text { c) } R-\{-2,4\} & \text { d) } R^{+}-\{-2\end{array} \)
Pon a prueba tus conocimientos sobre Precálculo!
Seleccione la respuesta correcta y verifique su respuesta
Tutores
AI
10x
La forma más rápida deObtenga respuestas y soluciones
Por texto
Introduce tu pregunta aquí…
Por imagen
Volver a cargar
Enviar