Q:
For the pair of parametric equations below, eliminate the parameter to find its Cartesian equation.
Also state the equation's domain and range using interval notation.
\( x(t)=-2-t \).
\( y(t)=-4 t^{2}+9 \)
Cartesian equation:
Domain: \( x \in \)
Range: \( y \in \)
Q:
¿Cuál es el valor aproximado de \( e \) al redondear a tres decimales?
Q:
Dada la función \( f(x)=\frac{4 x-1}{2 x+5} \), hallar el dominio y las ecuaciones de todas sus asínto
lallar su imagen.
Q:
The half-life of titanium-51 is approximately 5.76 minutes.
Step 1 of 3 : Determine \( a \) so that \( A(t)=A_{0} a^{\prime} \) describes the amount of titanium-51 left after \( t \) minutes, where \( A_{0} \) is the amount at time
\( t=0 \). Round to six decimal places.
Q:
\[ f(x)=\left\{\begin{array}{ll}\frac{-4}{x+2} & \text { if } x \leq-3 \\ 4 & \text { if }-3<x<3 \\ 2^{-x+5} & \text { if } x \geq 3\end{array}\right. \]
Step 1 of 3: Evaluate this function at \( x=-5 \). Write the exact answer. Do not round. If the answer is undefined, write Und as your answer.
Answer 2 Points
\[ f(-5)=\text { Keyboard Shortcuts } \]
Q:
Which of the following are parametric equations for the ellipse given by \( \frac{x^{2}}{9}+y^{2}=1 \) ? Choose all that
\( \begin{array}{l} \text { apply. } \\ \square x(t)=-3 \cos (t), y(t)=-\sin (t) \\ \square x(t)=3 \cos (5 t), y(t)=\sin (5 t) \\ \square x(t)=3 \cos (t), y(t)=\sin (t) \\ \square x(t)=\cos (t), y(t)=\frac{1}{3} \sin (t) \\ \square x(t)=\cos (t), y(t)=3 \cos (t) \\ \square x(t)=9 \cos (t), y(t)=\sin (t) \\ \square x(t)=3 \sin (t), y(t)=\cos (t)\end{array} \)
Q:
24. \( f(x)=\log _{1.2} x \)
Q:
Graph the polar equation.
\[ \mathrm{r}=\frac{18}{3-6 \cos \theta} \]
Q:
\begin{tabular}{|l|c|c|}\hline Lycée Yanboue Annour 2 & \( \begin{array}{c}\text { Suites numériques } \\ \text { Série } N^{\circ} 4\end{array} \) & 2Bac.PC \\ \hline \( \begin{array}{l}\text { Exercice1: } \\ \text { On considère les suites }\left(u_{n}\right) \text { et }\left(v_{n}\right) \text { définies par: } \quad u_{0}=0 \text { et }(\forall n \in \mathbb{N}) u_{n+1}=\frac{3 u_{n}+4}{u_{n}+6} \text { et } \quad v_{n}=\frac{u_{n}-1}{u_{n}+4} \\ \text { 1-Montrer que }(\forall n \in \mathbb{N})-4\left\langle u_{n}\langle 1\right.\end{array} \)\end{tabular}
Q:
\( f(x)=\sqrt [3]{x};[1,27] \)
Pon a prueba tus conocimientos sobre Precálculo!
Seleccione la respuesta correcta y verifique su respuesta
Tutores
AI
10x
La forma más rápida deObtenga respuestas y soluciones
Por texto
Introduce tu pregunta aquí…
Por imagen
Volver a cargar
Enviar