Q:
(8. Match the information on the left with the appropriate equation on the right.
An equation perpendicular to
\( y=-3 x+1 \) through the point
\( \begin{array}{l}(3,-2)\end{array} \)
\( y=-3 x+7 \)
An equation through the point \( (-2,3) \)
and parallel to \( y=-3 x-1 \)
\( y=-3 x-3 \)
\( y=\frac{1}{3} x+1 \)
Q:
Translate to an inequality.
The cost is less than \( \$ 57,000 \).
Q:
4) Resuelve las siguientes ecuaciones.
\( \begin{array}{ll}\text { a) } x+30=46 & \text { b) } x-10=4 \\ \text { c) } 2 . x=38 & \text { d) } x: 5=3 \\ \text { e) } 2 . x-15=35 & \text { f) } x: 4+12=14\end{array} \)
Q:
4. For vectors \( \vec{A}=120 \hat{i}-60 \hat{j}, \vec{B}=-3 \hat{i}+4 \hat{j} \) and \( C=10 j \) (answer only inside the given boxes.
\begin{tabular}{ll|l}\hline i) Find unit vgctor along & \( \vec{B} \quad \) [3pts] & ii) Find unit vector along \( E=\vec{A}+\vec{C}[4 p t s] \)\end{tabular}
Q:
Umnožak triju uzastopnih prirodnih brojeva jed-
nak je 4080 . Koliki je zbroj tih triju brojeva?
Q:
25.9. Найдите наибольшее целое значение \( x \), удовлетворяющее нера-
венству:
\( \begin{array}{ll}\text { 1) } 9^{x+1}-3^{x+3}<3^{x}-3 ; & \text { 2) } 13 \cdot 2^{x+4}-208 \cdot 2^{-2 x-3}<0 \\ \text { 3) } 7 \cdot 3^{x-2}+20 \cdot 3^{2-x}<\frac{41}{3^{x-2}} ; & \text { 4) } \frac{440}{c^{x}}-2 \cdot 6^{x}>8 \cdot 6^{-x}\end{array} \)
Q:
\( \left. \begin{array} { l } { 2 - 16 x ^ { - \frac { 1 } { 2 } } = 0 } \\ { 4 ^ { x } + 8 = 9.2 ^ { x } } \end{array} \right. \)
Q:
\( \begin{array}{l}\text { Eine Startzahl und eine Zielzahl sind vorgegeben. Finde die Zahlenfolge, } \\ \text { gegebenen Anzahl gleich grosser Schritte von der Startzahl zur Zielzahl } \\ \text { a Startzahl 0, Zielzahl 0.01, } 5 \text { gleich grosse Schritte } \\ \text { b Startzahl 3, Zielzahl 7.8, } 6 \text { gleich grosse Schritte } \\ \text { c Startzahl 0.5, Zielzahl 0.7, } 8 \text { gleich grosse Schritte }\end{array} \)
Q:
160 is what percentage of \( 40 ? \)
Q:
Match the information on the left with the appropriate equation on the right.
\( \begin{array}{l}\text { An equation perpendicular to } \\ y=-3 x+1 \text { through the point } \\ (3,-2) \\ y=-3 x+7 \\ \text { An equation through the point }(-2,3) \\ \text { and parallel to } y=-3 x-1 \\ y=\frac{1}{3} x-3 \\ y=-3\end{array} \)
Tutores
AI
10x
La forma más rápida deObtenga respuestas y soluciones
Por texto
Introduce tu pregunta aquí…
Por imagen
Volver a cargar
Enviar