Q:
Which of the following is equal to \( \log \sqrt[4]{1000} \) ? ( 1 point)
\( \begin{array}{l}\frac{3}{4} \\ -\frac{4}{3} \\ -\frac{3}{4}\end{array} \)
Q:
\[ f(x)=3 x^{2}-4 x+2,[0,2] \]
Yes, it does not matter if \( f \) is continuous or differentiable, every function satifies the Mean Value The
Yes, \( f \) is continuous on \( [0,2] \) and differentiable on \( (0,2) \) since polynomials are continuous and diffe
No, \( f \) is not continuous on \( [0,2] \).
No, \( f \) is continuous on \( [0,2] \) but not differentiable on \( (0,2) \),
There is not enough information to verify if this function satifies the Mean Value Theorem,
If it satisfies the hypotheses, find all numbers \( c \) that satisfy the conclusion of the Mean Value Theorem. (E
\( c=\square \)
Q:
Angle \( x \) is coterminal with angle \( y \). If the measure of angle \( x \) is greater than the measure of angle \( y \), which statement is
true regarding the values of \( x \) and \( y \) ?
\( x=y-180 n \), for any positive integer \( n \)
\( x=y-360 n \), for any integer \( n \)
\( x=y+360 n \), for any positive integer \( n \)
\( x=y+180 n \), for any integer \( n \)
Q:
Question 2
A bag contains 4 red balls, 3 black balls, and 3 green balls. Two balls are randomly drawn from the bag one
after the other with replacement.
2.1 Construct a tree diagram to represent all possible outcomes of drawing two balls in succession.
Clearly label the branches with the corresponding probabilities.
Q:
Determine which ordered pair(s) are solutions to the following system.
\[ \begin{array}{l}y=4 x-2 \\ y=-x+3 \\ \text { Which ordered pair(s) are solutions to the given system? Select all that apply. } \\ \text { A. }(1,2) \\ \text { B. }(2,-6) \\ \text { C. }(4,-1)\end{array} \]
(4,-1)
Q:
Decide whether the given ordered pair is a solution of the given system.
\( \begin{array}{l}(5,-6) \\ x+y \\ 4 x+2 y=-12\end{array} \)
Is the ordered pair a solution to the system of equations? \( \begin{array}{l}\text { No } \\ \text { Yes }\end{array} \)
Q:
3. If the equations \( 4 x-5 y=14 \) and \( 5 x-4 y=13 \) are simultancously true, then \( x-y \) equals
Q:
Ejercicio 5. Sistemas de Ecuaciones con infinitas soluciones.
Cada uno de los siguientes sistemas de ecuaciones lineales homogéneo
( \( 2 \times 3 \) ), tiene infinitas soluciones. Para cada sistema, realiza lo siguiente:-
- Determine el conjunto solución.
- Identifique un sistema fundamental de soluciones, es decir, una base que genere
conjunto solución obtenido en el ítem anterior.
- Describa la naturaleza geométrica de la solución obtenida en el ítem anterior (si
corresponde a una recta o un plano en el espacio). Puede utilizar GeoGebra para
realizar una verificación geométrica visual de la solución.
C. \( \left\{\begin{array}{c}4 x+y+z=0 \\ 8 x-5 y+2 z=0\end{array}\right. \)
Q:
fer uma pesquisa coma a turma e organizou os dados obtidos cm uma tabela De acordo ce
ual e a probabilidade de Catia sortear uma pessoa da turma e ela usar óculos?
Q:
a total of 38 goals this season. This is 16 more goals than they scored last season. How ma
team score last season? Which equation represents this problem?
Tutores
AI
10x
La forma más rápida deObtenga respuestas y soluciones
Por texto
Introduce tu pregunta aquí…
Por imagen
Volver a cargar
Enviar