\sum _{n=1}^{\infty}\frac{1}{n(n+1)} =
error msg
- Differential
- Integral
- Trigonometry
- Letters
- Algebra
- Calculus
- Trigonometry
- Matrix
Question
\sum _{n=1}^{+\infty}\frac{1}{n\left(n+1\right)}
Determine the convergence or divergence
-
Determine the convergence or divergence using the nth Term Test
-
Determine the convergence or divergence using the Limit Comparison Test
-
Determine the convergence or divergence using the Ratio Test
-
Determine the convergence or divergence using the Integral Test
More methods
Hide more
\textrm{Inconclusive}
Evaluate
\sum _{n=1}^{+\infty}\frac{1}{n\left(n+1\right)}
Find the limit
\lim _{n\rightarrow +\infty}\left(\frac{1}{n\left(n+1\right)}\right)
Rewrite the expression
\frac{1}{\lim _{n\rightarrow +\infty}\left(n\left(n+1\right)\right)}
Calculate
More Steps
Evaluate
\lim _{n\rightarrow +\infty}\left(n\left(n+1\right)\right)
Rewrite the expression
\lim _{n\rightarrow +\infty}\left(n\right)\times \lim _{n\rightarrow +\infty}\left(n+1\right)
Calculate
\left(+\infty\right)\times \lim _{n\rightarrow +\infty}\left(n+1\right)
Calculate
More Steps
Evaluate
\lim _{n\rightarrow +\infty}\left(n+1\right)
Rewrite the expression
\lim _{n\rightarrow +\infty}\left(n\right)+\lim _{n\rightarrow +\infty}\left(1\right)
Calculate
\left(+\infty\right)+\lim _{n\rightarrow +\infty}\left(1\right)
Calculate
\left(+\infty\right)+1
Calculate
+\infty
\left(+\infty\right)\left(+\infty\right)
Simplify
+\infty
\frac{1}{+\infty}
Calculate
0
Solution
\textrm{Inconclusive}
Show Solutions