Question
upstudy study bank question image url

1. Determina el ángulo de inclinación de la recta formada por estos puntos: a) \( (-7,4) y(1,-11) \) b) \( (-2,-1) y(2,3) \) \( \square \) c) \( (2,-2) y(6,1) \) \( \square \) d) \( (-5,-3) \) y \( (-1,-4) \) \[ \text { e) }(0,1) \text { y }(-4,6) \]

Ask by Ray Frank. in Mexico
Feb 27,2025

Upstudy AI Solution

Tutor-Verified Answer

Answer

a) El ángulo de inclinación es de aproximadamente **118.07°**. b) El ángulo de inclinación es de **45°**. c) El ángulo de inclinación es de aproximadamente **36.87°**. d) El ángulo de inclinación es de aproximadamente **165.96°**. e) El ángulo de inclinación es de aproximadamente **128.66°**.

Solution

Alright, I need to determine the angle of inclination of the lines formed by the given pairs of points. The angle of inclination is the angle that the line makes with the positive direction of the x-axis. To find this, I'll use the slope formula and then relate the slope to the angle using the arctangent function. First, let's recall that the slope \( m \) of a line passing through two points \( (x_1, y_1) \) and \( (x_2, y_2) \) is given by: \[ m = \frac{y_2 - y_1}{x_2 - x_1} \] Once I have the slope, the angle of inclination \( \theta \) can be found using: \[ \theta = \arctan(m) \] However, I need to be cautious with the arctangent function because it only returns values between \( -90^\circ \) and \( 90^\circ \). To get the correct angle in the appropriate quadrant, I'll consider the signs of the slope and the coordinates of the points. Let's tackle each part step by step. **Part a) \( (-7,4) \) and \( (1,-11) \)** - Calculate the slope: \[ m = \frac{-11 - 4}{1 - (-7)} = \frac{-15}{8} = -1.875 \] - Since the slope is negative, the line slopes downward from left to right. - Calculate the angle: \[ \theta = \arctan(-1.875) \approx -61.93^\circ \] - To express this in the standard position (positive angle from the positive x-axis): \[ \theta = 180^\circ - 61.93^\circ = 118.07^\circ \] So, the angle of inclination is approximately \( 118.07^\circ \). **Part b) \( (-2,-1) \) and \( (2,3) \)** - Calculate the slope: \[ m = \frac{3 - (-1)}{2 - (-2)} = \frac{4}{4} = 1 \] - The slope is positive, so the line slopes upward from left to right. - Calculate the angle: \[ \theta = \arctan(1) = 45^\circ \] So, the angle of inclination is \( 45^\circ \). **Part c) \( (2,-2) \) and \( (6,1) \)** - Calculate the slope: \[ m = \frac{1 - (-2)}{6 - 2} = \frac{3}{4} = 0.75 \] - The slope is positive, so the line slopes upward from left to right. - Calculate the angle: \[ \theta = \arctan(0.75) \approx 36.87^\circ \] So, the angle of inclination is approximately \( 36.87^\circ \). **Part d) \( (-5,-3) \) and \( (-1,-4) \)** - Calculate the slope: \[ m = \frac{-4 - (-3)}{-1 - (-5)} = \frac{-1}{4} = -0.25 \] - The slope is negative, so the line slopes downward from left to right. - Calculate the angle: \[ \theta = \arctan(-0.25) \approx -14.04^\circ \] - To express this in the standard position: \[ \theta = 180^\circ - 14.04^\circ = 165.96^\circ \] So, the angle of inclination is approximately \( 165.96^\circ \). **Part e) \( (0,1) \) and \( (-4,6) \)** - Calculate the slope: \[ m = \frac{6 - 1}{-4 - 0} = \frac{5}{-4} = -1.25 \] - The slope is negative, so the line slopes downward from left to right. - Calculate the angle: \[ \theta = \arctan(-1.25) \approx -51.34^\circ \] - To express this in the standard position: \[ \theta = 180^\circ - 51.34^\circ = 128.66^\circ \] So, the angle of inclination is approximately \( 128.66^\circ \). **Summary of Results:** - a) \( 118.07^\circ \) - b) \( 45^\circ \) - c) \( 36.87^\circ \) - d) \( 165.96^\circ \) - e) \( 128.66^\circ \)

Answered by UpStudy AI and reviewed by a Professional Tutor

error msg
Explain
Simplify this solution

The Deep Dive

Para encontrar el ángulo de inclinación de una recta formada por dos puntos, primero debemos calcular la pendiente \( m \) de la recta, que se obtiene con la fórmula: \[ m = \frac{y_2 - y_1}{x_2 - x_1} \] Luego, el ángulo de inclinación \( \theta \) se puede determinar utilizando la tangente inversa: \[ \theta = \tan^{-1}(m) \] Ahora calculamos la pendiente y el ángulo para cada par de puntos. ### a) Para los puntos \( (-7,4) \) y \( (1,-11) \): \[ m = \frac{-11 - 4}{1 - (-7)} = \frac{-15}{8} \] \[ \theta = \tan^{-1}\left(\frac{-15}{8}\right) \approx -61.93^\circ \text{ (nótese que el ángulo está por debajo del eje x)} \] ### b) Para \( (-2,-1) \) y \( (2,3) \): \[ m = \frac{3 - (-1)}{2 - (-2)} = \frac{4}{4} = 1 \] \[ \theta = \tan^{-1}(1) = 45^\circ \] ### c) Para \( (2,-2) \) y \( (6,1) \): \[ m = \frac{1 - (-2)}{6 - 2} = \frac{3}{4} \] \[ \theta = \tan^{-1}\left(\frac{3}{4}\right) \approx 36.87^\circ \] ### d) Para \( (-5,-3) \) y \( (-1,-4) \): \[ m = \frac{-4 - (-3)}{-1 - (-5)} = \frac{-1}{4} \] \[ \theta = \tan^{-1}\left(-\frac{1}{4}\right) \approx -14.04^\circ \] ### e) Para \( (0,1) \) y \( (-4,6) \): \[ m = \frac{6 - 1}{-4 - 0} = \frac{5}{-4} = -\frac{5}{4} \] \[ \theta = \tan^{-1}\left(-\frac{5}{4}\right) \approx -51.34^\circ \] Recuerda que el ángulo de inclinación puede ser interpretado como el ángulo que la recta forma con la dirección positiva del eje \( x \). Si el ángulo es negativo, indica que la recta desciende a medida que avanza a la derecha.

Related Questions

Latest Geometry Questions

Try Premium now!
Try Premium and ask Thoth AI unlimited math questions now!
Maybe later Go Premium
Study can be a real struggle
Why not UpStudy it?
Select your plan below
Premium

You can enjoy

Start now
  • Step-by-step explanations
  • 24/7 expert live tutors
  • Unlimited number of questions
  • No interruptions
  • Full access to Answer and Solution
  • Full Access to PDF Chat, UpStudy Chat, Browsing Chat
Basic

Totally free but limited

  • Limited Solution
Welcome to UpStudy!
Please sign in to continue the Thoth AI Chat journey
Continue with Email
Or continue with
By clicking “Sign in”, you agree to our Terms of Use & Privacy Policy