Question
19. dy/dx = (xy + 3x - y - 3)/(xy - 2x + 4y - 8)
Ask by Simmons Hammond.
Mar 23,2025 11:29
Upstudy AI Solution
Tutor-Verified Answer
Answer
The general solution to the differential equation is:
\[
y - x - 5\ln\left|\frac{y+3}{x+4}\right| = C
\]
where \( C \) is an arbitrary constant.
Solution
Sign in to Unlock Answers for Free! ![]()
A Learning Platform Trusted by Millions of Real Students and Teachers.
Unlock Answered by UpStudy AI and reviewed by a Professional Tutor
Like
Beyond the Answer
To solve this differential equation, we can start by factoring or simplifying the given expression. First, note the numerator \(x y + 3 x - y - 3\) and the denominator \(x y - 2 x + 4 y - 8\).
Let's make the substitution \(y = vx\), where \(v\) is a function of \(x\). Then \(dy/dx = v + x(dv/dx)\). This transforms the equation into a separable form, allowing us to solve for \(v\) in terms of \(x\).
After substituting and simplifying, we can separate the variables and integrate both sides. The constants of integration will give rise to the general solution for \(y\) in terms of \(x\).
In real-world applications, understanding how to approach such a first-order differential equation can model various phenomena, from population dynamics to physics problems like motion under gravity where variables interact in complex ways.
Related Questions
32) Rules of 70 and 72: The rules state that it takes about 70/i of 72/ i years for money to double at i percent, compounded continuously, using whichever of 70 or 72 is easier to divide by i. a) Show that it takes t=ln 2/r years for money to double if it is invested at annual interest rate r (in decimal form) compounded continuously. b) Graph the functions y_1=ln2 / r, y_2=70/100r, y_3=72/100r 0<=r<=0.1 and 0<=y<=100 viewing window. c) Explain why these two rules of thumb for mental computations are reasonable.
Calculus
Mar 24, 2025
17-22 Utilisez une intégrale double pour calculer l'aire de la région.
17. Une boucle de la rosace r=cos 3theta
Calculus
Mar 18, 2025
1. Алғашқы функциясының жалпы турін табыңыз: f(x)=2x^{5}-3x^{2}
A) frac{x^{6}}{3}-x^{3}+C
B) frac{x^{6}}{3}-x^{2}+C
C) frac{x^{6}}{6}-x^{3}+C
D) 10x^{4}-6x+C
2. Апғашқы функциясының жалпы турін табыңыз: f(x)=frac{2}{x}+frac{3}{x^{2}}
A) ln x-frac{3}{x}+C
B) x-frac{3}{x}+C
C) 2ln x-frac{3}{x}+C
D) 2ln x+frac{3}{x}+C
3. f(x)=5 x^{2}-3 дің алғашқы функциясы ушін F(1)=7 орындалады. Алғашқы функцияны табыңыз:
A) frac{5}{3}x^{3}-3x-frac{37}{3}
B) frac{5}{3}x^{3}+3x+frac{37}{3}
C) frac{5}{3}x^{3}-3x+frac{25}{3}
D) frac{5}{3}x^{3}-3x+frac{27}{3}
4. Алғашқы функциясының жалпы турін табыңыз: f(x)=1+3e^{x}-4cosx
A) x+e^{x}-4sinx+C
B) x+3e^{x}+4sinx+C
C) 3e^{x}-4sinx+C
D) x+3e^{x}-4sinx+C
5. Апғашқы функциясының жалпы турін табыңыз: f(x)=(x-2)^{4}
A) frac{(x-2)^{3}}{6}+C
B) frac{(x-2)^{5}}{5}+C
C) frac{(x-2)^{3}}{3}+C
D) frac{(x-2)^{4}}{4}+C
6. Есептеңіз: ∫ ((1+cos ^{2}x)/(cos^{2}x))dx
A) 1/cos ^{2}x+x+C
B) -x/tgx+x+C
C) -sin^{2}x+x+C
D) tgx+x+C
Calculus
Mar 21, 2025
Find all critical points of the following function.
\( f(x, y)=\frac{x^{3}}{3}-\frac{y^{3}}{3}+9 x y \)
What are the critical points? Select the correct choice below and fill in any answer boxes within your choice.
A. The critical point(s) is/are
(Type an ordered pair. Use a comma to separate answers as needed.)
B. There are no critical points.
Calculus
Mar 18, 2025