\( \begin{array}{l}\text { 1. Given a number written in scientific notation, how } \\ \text { do you adjust the exponent and decimal if needed? } \\ \text { Evaluate the following. } \\ \begin{array}{ll}\left(6.3 \times 10^{2}\right)+\left(4.1 \times 10^{3}\right) & \text { 3. }\left(9.2 \times 10^{-5}\right)-\left(2.4 \times 10^{-6}\right) \\ \left(10^{2} \times 10^{3}\right)+(4.1 \times 6.3) \\ 10^{5}+25.83 & \text { 5. }\left(1.9 \times 10^{-2}\right) \div\left(2 \times 10^{-9}\right)\end{array} \\ \begin{array}{l}\text { 4. }\left(7.2 \times 10^{-7}\right) \times\left(5.8 \times 10^{4}\right)\end{array}\end{array} \)
Upstudy AI Solution
Answer
Solution
Answered by UpStudy AI and reviewed by a Professional Tutor


Beyond the Answer
To adjust the exponent and decimal, you want to ensure both numbers are expressed with the same power of ten. If one has a larger exponent, shift the decimal place of the smaller exponent to create an equivalent number. For example, to add \( 6.3 \times 10^{2} \) and \( 4.1 \times 10^{3} \), convert \( 6.3 \times 10^{2} \) to \( 0.063 \times 10^{3} \) which allows you to combine them easily. Now, let's tackle the calculations! 1. **Addition**: \( (6.3 \times 10^{2}) + (4.1 \times 10^{3}) = 0.063 \times 10^{3} + 4.1 \times 10^{3} = 4.163 \times 10^{3} \) 2. **Subtraction**: \( (9.2 \times 10^{-5}) - (2.4 \times 10^{-6}) = 9.2 \times 10^{-5} - 0.024 \times 10^{-5} = 9.176 \times 10^{-5} \) 3. **Multiplication**: \( (10^{2} \times 10^{3}) + (4.1 \times 6.3) = 10^{5} + 25.83 = 100000 + 25.83 = 100025.83 \) 4. **Multiplication**: \( (7.2 \times 10^{-7}) \times (5.8 \times 10^{4}) = 41.76 \times 10^{-3} = 4.176 \times 10^{-2} \) 5. **Division**: \( (1.9 \times 10^{-2}) \div (2 \times 10^{-9}) = 0.95 \times 10^{7} = 9.5 \times 10^{6} \) That's how you navigate through scientific notation like a pro! Keep practicing, and you'll become a whiz in no time!