Question
upstudy study bank question image url

\( \begin{array}{l}\text { 1. Given a number written in scientific notation, how } \\ \text { do you adjust the exponent and decimal if needed? } \\ \text { Evaluate the following. } \\ \begin{array}{ll}\left(6.3 \times 10^{2}\right)+\left(4.1 \times 10^{3}\right) & \text { 3. }\left(9.2 \times 10^{-5}\right)-\left(2.4 \times 10^{-6}\right) \\ \left(10^{2} \times 10^{3}\right)+(4.1 \times 6.3) \\ 10^{5}+25.83 & \text { 5. }\left(1.9 \times 10^{-2}\right) \div\left(2 \times 10^{-9}\right)\end{array} \\ \begin{array}{l}\text { 4. }\left(7.2 \times 10^{-7}\right) \times\left(5.8 \times 10^{4}\right)\end{array}\end{array} \)

Ask by Welch Young. in the United States
Feb 27,2025

Upstudy AI Solution

Tutor-Verified Answer

Answer

1. \( 47.3 \times 10^{2} \) 2. \( 8.96 \times 10^{-5} \) 3. \( 10^{5} + 25.83 \) 4. \( 41.76 \times 10^{-3} \) 5. \( 0.95 \times 10^{7} \)

Solution

To solve the problems involving numbers in scientific notation, we will follow these steps: 1. **Adjust the exponents and decimals if needed**: When adding or subtracting numbers in scientific notation, the exponents must be the same. If they are not, we adjust one of the numbers to match the exponent of the other. For multiplication and division, we can directly multiply or divide the coefficients and add or subtract the exponents. 2. **Evaluate each expression step by step**. Let's evaluate each expression one by one. ### 1. \( (6.3 \times 10^{2}) + (4.1 \times 10^{3}) \) To add these two numbers, we need to adjust the exponents: - Convert \( 4.1 \times 10^{3} \) to the same exponent as \( 6.3 \times 10^{2} \): \[ 4.1 \times 10^{3} = 4.1 \times 10^{1} \times 10^{2} = 41.0 \times 10^{2} \] Now we can add: \[ (6.3 + 41.0) \times 10^{2} = 47.3 \times 10^{2} \] ### 2. \( (9.2 \times 10^{-5}) - (2.4 \times 10^{-6}) \) Here, we need to adjust the exponents again: - Convert \( 2.4 \times 10^{-6} \) to the same exponent as \( 9.2 \times 10^{-5} \): \[ 2.4 \times 10^{-6} = 0.24 \times 10^{-5} \] Now we can subtract: \[ (9.2 - 0.24) \times 10^{-5} = 8.96 \times 10^{-5} \] ### 3. \( (10^{2} \times 10^{3}) + (4.1 \times 6.3) \) For the first part: \[ 10^{2} \times 10^{3} = 10^{2 + 3} = 10^{5} \] For the second part: \[ 4.1 \times 6.3 = 25.83 \] Now we can add: \[ 10^{5} + 25.83 \] Since \( 10^{5} \) is much larger than \( 25.83 \), we can express the result as: \[ 10^{5} + 25.83 \approx 10^{5} \text{ (dominant term)} \] ### 4. \( (7.2 \times 10^{-7}) \times (5.8 \times 10^{4}) \) For multiplication: \[ (7.2 \times 5.8) \times (10^{-7} \times 10^{4}) = 41.76 \times 10^{-3} \] ### 5. \( (1.9 \times 10^{-2}) \div (2 \times 10^{-9}) \) For division: \[ \frac{1.9}{2} \times 10^{-2 - (-9)} = 0.95 \times 10^{7} \] Now, let's summarize the results: 1. \( (6.3 \times 10^{2}) + (4.1 \times 10^{3}) = 47.3 \times 10^{2} \) 2. \( (9.2 \times 10^{-5}) - (2.4 \times 10^{-6}) = 8.96 \times 10^{-5} \) 3. \( (10^{2} \times 10^{3}) + (4.1 \times 6.3) = 10^{5} + 25.83 \) 4. \( (7.2 \times 10^{-7}) \times (5.8 \times 10^{4}) = 41.76 \times 10^{-3} \) 5. \( (1.9 \times 10^{-2}) \div (2 \times 10^{-9}) = 0.95 \times 10^{7} \) These are the evaluated results for each expression.

Answered by UpStudy AI and reviewed by a Professional Tutor

error msg
Explain
Simplify this solution

Beyond the Answer

To adjust the exponent and decimal, you want to ensure both numbers are expressed with the same power of ten. If one has a larger exponent, shift the decimal place of the smaller exponent to create an equivalent number. For example, to add \( 6.3 \times 10^{2} \) and \( 4.1 \times 10^{3} \), convert \( 6.3 \times 10^{2} \) to \( 0.063 \times 10^{3} \) which allows you to combine them easily. Now, let's tackle the calculations! 1. **Addition**: \( (6.3 \times 10^{2}) + (4.1 \times 10^{3}) = 0.063 \times 10^{3} + 4.1 \times 10^{3} = 4.163 \times 10^{3} \) 2. **Subtraction**: \( (9.2 \times 10^{-5}) - (2.4 \times 10^{-6}) = 9.2 \times 10^{-5} - 0.024 \times 10^{-5} = 9.176 \times 10^{-5} \) 3. **Multiplication**: \( (10^{2} \times 10^{3}) + (4.1 \times 6.3) = 10^{5} + 25.83 = 100000 + 25.83 = 100025.83 \) 4. **Multiplication**: \( (7.2 \times 10^{-7}) \times (5.8 \times 10^{4}) = 41.76 \times 10^{-3} = 4.176 \times 10^{-2} \) 5. **Division**: \( (1.9 \times 10^{-2}) \div (2 \times 10^{-9}) = 0.95 \times 10^{7} = 9.5 \times 10^{6} \) That's how you navigate through scientific notation like a pro! Keep practicing, and you'll become a whiz in no time!

Try Premium now!
Try Premium and ask Thoth AI unlimited math questions now!
Maybe later Go Premium
Study can be a real struggle
Why not UpStudy it?
Select your plan below
Premium

You can enjoy

Start now
  • Step-by-step explanations
  • 24/7 expert live tutors
  • Unlimited number of questions
  • No interruptions
  • Full access to Answer and Solution
  • Full Access to PDF Chat, UpStudy Chat, Browsing Chat
Basic

Totally free but limited

  • Limited Solution
Welcome to UpStudy!
Please sign in to continue the Thoth AI Chat journey
Continue with Email
Or continue with
By clicking “Sign in”, you agree to our Terms of Use & Privacy Policy