Upstudy AI Solution
Answer
Solution
Answered by UpStudy AI and reviewed by a Professional Tutor


Beyond the Answer
To integrate \(3 \cosh^2(x)\), recall the identity \(\cosh^2(x) = \frac{1 + \cosh(2x)}{2}\). Thus, you can rewrite the integral as follows: \[ 3 \int \cosh^2(x) \, dx = 3 \int \frac{1 + \cosh(2x)}{2} \, dx = \frac{3}{2} \left( \int 1 \, dx + \int \cosh(2x) \, dx \right) \] Now, integrating each term gives: \[ \int 1 \, dx = x, \quad \text{and} \quad \int \cosh(2x) \, dx = \frac{1}{2} \sinh(2x) \] Putting it all together, the integral becomes: \[ \frac{3}{2} \left( x + \frac{1}{2} \sinh(2x) \right) + C \] This simplifies to: \[ \frac{3x}{2} + \frac{3}{4} \sinh(2x) + C \] So, the final result is: \[ \int 3 \cosh^2(x) \, dx = \frac{3x}{2} + \frac{3}{4} \sinh(2x) + C \]