Question
upstudy study bank question image url

\( \int 3 \cosh ^ { 2 } ( x ) \)

Ask by Klein Chang. in Puerto Rico
Feb 25,2025

Upstudy AI Solution

Tutor-Verified Answer

Answer

La integral de \( 3 \cosh^2(x) \) es \( \frac{3x}{2} + \frac{3 \sinh(2x)}{4} + C \), donde \( C \) es una constante.

Solution

Para resolver la integral   ∫ 3 cosh²(x) dx podemos utilizar la identidad hiperbólica:   cosh²(x) = (1 + cosh(2x)) / 2. Entonces, sustituyendo en la integral:   ∫ 3 cosh²(x) dx = 3 ∫ cosh²(x) dx              = 3 ∫ [1 + cosh(2x)]/2 dx              = (3/2) ∫ [1 + cosh(2x)] dx. Ahora separamos la integral:   (3/2) [∫ 1 dx + ∫ cosh(2x) dx]. La integral de 1 con respecto a x es:   ∫ 1 dx = x. Para la integral de cosh(2x), usamos el cambio de variable considerando que la derivada de sinh(2x) es 2 cosh(2x). Por ello:   ∫ cosh(2x) dx = (1/2) sinh(2x). Sustituyendo ambas integrales:   (3/2) [x + (1/2) sinh(2x)] = (3x/2) + (3 sinh(2x)/4). Por lo tanto, la integral es:   ∫ 3 cosh²(x) dx = (3x/2) + (3 sinh(2x)/4) + C, donde C es la constante de integración.

Answered by UpStudy AI and reviewed by a Professional Tutor

error msg
Explain
Simplify this solution

Beyond the Answer

To integrate \(3 \cosh^2(x)\), recall the identity \(\cosh^2(x) = \frac{1 + \cosh(2x)}{2}\). Thus, you can rewrite the integral as follows: \[ 3 \int \cosh^2(x) \, dx = 3 \int \frac{1 + \cosh(2x)}{2} \, dx = \frac{3}{2} \left( \int 1 \, dx + \int \cosh(2x) \, dx \right) \] Now, integrating each term gives: \[ \int 1 \, dx = x, \quad \text{and} \quad \int \cosh(2x) \, dx = \frac{1}{2} \sinh(2x) \] Putting it all together, the integral becomes: \[ \frac{3}{2} \left( x + \frac{1}{2} \sinh(2x) \right) + C \] This simplifies to: \[ \frac{3x}{2} + \frac{3}{4} \sinh(2x) + C \] So, the final result is: \[ \int 3 \cosh^2(x) \, dx = \frac{3x}{2} + \frac{3}{4} \sinh(2x) + C \]

Try Premium now!
Try Premium and ask Thoth AI unlimited math questions now!
Maybe later Go Premium
Study can be a real struggle
Why not UpStudy it?
Select your plan below
Premium

You can enjoy

Start now
  • Step-by-step explanations
  • 24/7 expert live tutors
  • Unlimited number of questions
  • No interruptions
  • Full access to Answer and Solution
  • Full Access to PDF Chat, UpStudy Chat, Browsing Chat
Basic

Totally free but limited

  • Limited Solution
Welcome to UpStudy!
Please sign in to continue the Thoth AI Chat journey
Continue with Email
Or continue with
By clicking “Sign in”, you agree to our Terms of Use & Privacy Policy