Question
upstudy study bank question image url

2. Determine whether each curve has a linear oblique asymptote. If it does, state its equation. \( \begin{array}{ll}\text { a) } f(x)=2 x^{2}+3+\frac{1}{x} & \text { b) } y=3-x-\frac{1}{x}\end{array} \)

Ask by Valdez Byrd. in Canada
Feb 27,2025

Upstudy AI Solution

Tutor-Verified Answer

Answer

a) La funzione f(x) = 2x² + 3 + (1/x) non ha un asintoto obliquo lineare perché la parte quadratica domina per valori grandi di x. b) La funzione y = 3 − x − (1/x) ha un asintoto obliquo lineare dato da y = −x + 3.

Solution

Procediamo con l'analisi: a) Considera f(x) = 2x² + 3 + (1/x). Per x → ±∞, il termine 2x² domina, quindi f(x) cresce come una funzione quadratica. Un asintoto obliquo lineare ha la forma y = ax + b, ma qui la parte quadratica non si “annulla” sottraendola. In altre parole, non esistono costanti a e b tali che f(x) − (ax + b) → 0 quando x → ±∞. Quindi, la funzione (a) non possiede un asintoto obliquo lineare. b) Considera y = 3 − x − (1/x). Per x → ±∞ il termine (1/x) tende a 0, e la funzione si comporta come y ≈ 3 − x, che è un'equazione lineare. Possiamo scrivere:   y = (−x + 3) + (termine che tende a 0) quindi, l'asintoto obliquo è la retta:   y = −x + 3 Riassumendo: a) f(x) = 2x² + 3 + (1/x) non ha asintoto obliquo lineare, in quanto la funzione cresce come 2x². b) y = 3 − x − (1/x) ha asintoto obliquo lineare y = −x + 3.

Answered by UpStudy AI and reviewed by a Professional Tutor

error msg
Explain
Simplify this solution

Beyond the Answer

To determine if a function has a linear oblique asymptote, we look at the leading term's degree in relation to the degree of the denominator in rational functions or observe their behavior at infinity. For function \( a) \): \( f(x) = 2x^2 + 3 + \frac{1}{x} \), as \( x \to \infty \) or \( x \to -\infty \), the \( 2x^2 \) term dominates, and there's no oblique asymptote since the degree (2) is higher than 1. For function \( b) \): \( y = 3 - x - \frac{1}{x} \), as \( x \to \infty \), the \(-\frac{1}{x}\) term approaches 0. Hence, the function behaves like \( y = 3 - x \), which indicates a linear oblique asymptote with the equation \( y = -x + 3 \). In summary, function \( a) \) has no linear oblique asymptote, while function \( b) \) does, with the equation \( y = -x + 3 \).

Try Premium now!
Try Premium and ask Thoth AI unlimited math questions now!
Maybe later Go Premium
Study can be a real struggle
Why not UpStudy it?
Select your plan below
Premium

You can enjoy

Start now
  • Step-by-step explanations
  • 24/7 expert live tutors
  • Unlimited number of questions
  • No interruptions
  • Full access to Answer and Solution
  • Full Access to PDF Chat, UpStudy Chat, Browsing Chat
Basic

Totally free but limited

  • Limited Solution
Welcome to UpStudy!
Please sign in to continue the Thoth AI Chat journey
Continue with Email
Or continue with
By clicking “Sign in”, you agree to our Terms of Use & Privacy Policy