Question
upstudy study bank question image url

Simplify 1. \( \frac{2^{x+2}-2^{x+1}}{2^{x}+2^{x+2}} \) \( 6=\frac{3^{x+1}+3^{x+2}}{8 \cdot 3^{x+1}} \) 3. \( \frac{4^{x}+3 \cdot 2^{2 x+1}}{7 \cdot 2^{2 x+1}} \) 4. \( \frac{12^{x}+4^{x} \cdot 3^{x+1}}{2^{2 x+4} \cdot 3^{x}} \) 5. \( \frac{2 \cdot 3^{x}+3^{x-2}}{3^{x+1}-7 \cdot 3^{x-1}} \)

Ask by Brewer Burgess. in South Africa
Feb 26,2025

Upstudy AI Solution

Tutor-Verified Answer

Answer

1. \( \frac{2}{5} \) 2. \( 6=\frac{3^{x+1}+3^{x+2}}{8 \cdot 3^{x+1}} \) 3. \( \frac{1}{2} \) 4. \( \frac{1}{4} \) 5. \( -\frac{19}{12} \)

Solution

Simplify the expression by following steps: - step0: Solution: \(\frac{\left(2\times 3^{x}+3^{x-2}\right)}{\left(3^{x+1}-7\times 3^{x-1}\right)}\) - step1: Remove the parentheses: \(\frac{2\times 3^{x}+3^{x-2}}{3^{x+1}-7\times 3^{x-1}}\) - step2: Subtract the terms: \(\frac{2\times 3^{x}+3^{x-2}}{2\times 3^{x-1}}\) - step3: Factor the expression: \(\frac{\left(2+3^{-2}\right)\times 3^{x}}{2\times 3^{x-1}}\) - step4: Reduce the fraction: \(\frac{\left(2+3^{-2}\right)\times 3}{2}\) - step5: Calculate: \(\frac{\frac{19}{3}}{2}\) - step6: Multiply by the reciprocal: \(\frac{19}{3}\times \frac{1}{2}\) - step7: Multiply the terms: \(\frac{19}{3\times 2}\) - step8: Multiply the terms: \(\frac{19}{6}\) Calculate or simplify the expression \( (2^(x+2)-2^(x+1))/(2^x+2^(x+2)) \). Simplify the expression by following steps: - step0: Solution: \(\frac{\left(2^{x+2}-2^{x+1}\right)}{\left(2^{x}+2^{x+2}\right)}\) - step1: Remove the parentheses: \(\frac{2^{x+2}-2^{x+1}}{2^{x}+2^{x+2}}\) - step2: Subtract the terms: \(\frac{2^{x+1}}{2^{x}+2^{x+2}}\) - step3: Add the terms: \(\frac{2^{x+1}}{5\times 2^{x}}\) - step4: Divide the terms: \(\frac{2}{5}\) Calculate or simplify the expression \( (4^x+3*2^(2*x+1))/(7*2^(2*x+1)) \). Simplify the expression by following steps: - step0: Solution: \(\frac{\left(4^{x}+3\times 2^{2x+1}\right)}{\left(7\times 2^{2x+1}\right)}\) - step1: Remove the parentheses: \(\frac{4^{x}+3\times 2^{2x+1}}{7\times 2^{2x+1}}\) - step2: Add the terms: \(\frac{7\times 2^{2x}}{7\times 2^{2x+1}}\) - step3: Reduce the fraction: \(\frac{2^{2x}}{2^{2x+1}}\) - step4: Divide the numbers: \(\frac{1}{2^{2x+1-2x}}\) - step5: Subtract the terms: \(\frac{1}{2^{1}}\) - step6: Simplify: \(\frac{1}{2}\) Calculate or simplify the expression \( (12^x+4^x*3^(x+1))/(2^(2*x+4)*3^x) \). Simplify the expression by following steps: - step0: Solution: \(\frac{\left(12^{x}+4^{x}\times 3^{x+1}\right)}{\left(2^{2x+4}\times 3^{x}\right)}\) - step1: Remove the parentheses: \(\frac{12^{x}+4^{x}\times 3^{x+1}}{2^{2x+4}\times 3^{x}}\) - step2: Add the terms: \(\frac{4\times 12^{x}}{2^{2x+4}\times 3^{x}}\) - step3: Factor the expression: \(\frac{2^{2}\times 12^{x}}{2^{4+2x}\times 3^{x}}\) - step4: Reduce the fraction: \(\frac{12^{x}}{2^{2+2x}\times 3^{x}}\) - step5: Factor the expression: \(\frac{2^{2x}\times 3^{x}}{2^{2x+2}\times 3^{x}}\) - step6: Reduce the fraction: \(\frac{2^{2x}}{2^{2x+2}}\) - step7: Divide the numbers: \(\frac{1}{2^{2x+2-2x}}\) - step8: Subtract the terms: \(\frac{1}{2^{2}}\) - step9: Evaluate the power: \(\frac{1}{4}\) Let's simplify each expression step by step. 1. **Expression:** \[ \frac{2^{x+2}-2^{x+1}}{2^{x}+2^{x+2}} \] **Simplification:** - The numerator can be factored as \(2^{x+1}(2 - 1) = 2^{x+1}\). - The denominator can be factored as \(2^{x}(1 + 2^{2}) = 2^{x}(1 + 4) = 5 \cdot 2^{x}\). - Thus, the expression simplifies to: \[ \frac{2^{x+1}}{5 \cdot 2^{x}} = \frac{2}{5} \] 2. **Expression:** \[ 6=\frac{3^{x+1}+3^{x+2}}{8 \cdot 3^{x+1}} \] **Note:** This is an equation, so we need to solve it instead of simplifying. Let's proceed with solving it. 3. **Expression:** \[ \frac{4^{x}+3 \cdot 2^{2 x+1}}{7 \cdot 2^{2 x+1}} \] **Simplification:** - Rewrite \(4^{x}\) as \(2^{2x}\), so the numerator becomes \(2^{2x} + 3 \cdot 2^{2x + 1} = 2^{2x} + 6 \cdot 2^{2x} = 7 \cdot 2^{2x}\). - The denominator is \(7 \cdot 2^{2x + 1}\). - Thus, the expression simplifies to: \[ \frac{7 \cdot 2^{2x}}{7 \cdot 2^{2x + 1}} = \frac{1}{2} \] 4. **Expression:** \[ \frac{12^{x}+4^{x} \cdot 3^{x+1}}{2^{2 x+4} \cdot 3^{x}} \] **Simplification:** - Rewrite \(12^{x}\) as \(3^{x} \cdot 2^{2x}\) and \(4^{x}\) as \(2^{2x}\). - The numerator becomes \(3^{x} \cdot 2^{2x} + 2^{2x} \cdot 3^{x+1} = 3^{x} \cdot 2^{2x} + 2^{2x} \cdot 3^{x} \cdot 3 = 4 \cdot 3^{x} \cdot 2^{2x}\). - The denominator is \(2^{2x + 4} \cdot 3^{x}\). - Thus, the expression simplifies to: \[ \frac{4 \cdot 3^{x} \cdot 2^{2x}}{2^{2x + 4} \cdot 3^{x}} = \frac{4}{16} = \frac{1}{4} \] 5. **Expression:** \[ \frac{2 \cdot 3^{x}+3^{x-2}}{3^{x+1}-7 \cdot 3^{x-1}} \] **Simplification:** - The numerator can be factored as \(3^{x-2}(2 \cdot 3^{2} + 1) = 3^{x-2}(18 + 1) = 19 \cdot 3^{x-2}\). - The denominator can be factored as \(3^{x-1}(3 - 7) = -4 \cdot 3^{x-1}\). - Thus, the expression simplifies to: \[ \frac{19 \cdot 3^{x-2}}{-4 \cdot 3^{x-1}} = \frac{19}{-4 \cdot 3} = -\frac{19}{12} \] ### Summary of Results: 1. \( \frac{2}{5} \) 2. **Equation to solve:** \( 6=\frac{3^{x+1}+3^{x+2}}{8 \cdot 3^{x+1}} \) 3. \( \frac{1}{2} \) 4. \( \frac{1}{4} \) 5. \( -\frac{19}{12} \)

Answered by UpStudy AI and reviewed by a Professional Tutor

error msg
Explain
Simplify this solution

Beyond the Answer

To simplify the given expressions, let's go through each one step by step. 1. Start with: \[ \frac{2^{x+2}-2^{x+1}}{2^{x}+2^{x+2}} \] The numerator can be factored: \[ 2^{x+1}(2 - 1) = 2^{x+1} \] For the denominator: \[ 2^{x} + 2^{x+2} = 2^{x} (1 + 2^2) = 2^{x} \cdot 5 \] Putting this together: \[ \frac{2^{x+1}}{5 \cdot 2^{x}} = \frac{2}{5} \] 2. For: \[ 6=\frac{3^{x+1}+3^{x+2}}{8 \cdot 3^{x+1}} \] Simplifying the right side gives: \[ 3^{x+1} (1 + 3) = 4 \cdot 3^{x + 1} \] Thus: \[ 6 = \frac{4 \cdot 3^{x+1}}{8 \cdot 3^{x+1}} = \frac{1}{2}, \text{ but both sides don't equal. Thus, there's an error or misunderstanding here.} \] 3. Next, for: \[ \frac{4^{x}+3 \cdot 2^{2x+1}}{7 \cdot 2^{2x+1}} \] Rewrite \( 4^{x} \) as \( 2^{2x} \): \[ \frac{2^{2x} + 3 \cdot 2^{2x+1}}{7 \cdot 2^{2x+1}} = \frac{2^{2x} + 6 \cdot 2^{2x}}{7 \cdot 2^{2x+1}} = \frac{7 \cdot 2^{2x}}{7 \cdot 2^{2x+1}} = \frac{1}{2} \] 4. Now for: \[ \frac{12^{x}+4^{x} \cdot 3^{x+1}}{2^{2 x+4} \cdot 3^{x}} \] Rewrite each component: \[ 12^{x} = (3 \cdot 4)^{x} = 3^{x} \cdot 4^{x} = 3^{x} \cdot (2^{2})^{x} = 3^{x} \cdot 2^{2x} \] The numerator becomes: \[ 3^{x} \cdot 2^{2x} + (3^{x+1} \cdot 2^{2x}) = 3^{x} \cdot 2^{2x}(1 + 3) = 4 \cdot 3^{x} \cdot 2^{2x} \] The denominator: \[ 2^{2x+4} \cdot 3^{x} = 2^{2x} \cdot 3^{x} \cdot 16 \] Simplifying gives: \[ \frac{4 \cdot 3^{x} \cdot 2^{2x}}{16 \cdot 2^{2x} \cdot 3^{x}} = \frac{4}{16} = \frac{1}{4} \] 5. Lastly, for: \[ \frac{2 \cdot 3^{x}+3^{x-2}}{3^{x+1}-7 \cdot 3^{x-1}} \] The numerator is: \[ 3^{x-2}(2 \cdot 3^2 + 1) = 3^{x-2}(18 + 1) = 19 \cdot 3^{x-2} \] The denominator: \[ 3^{x-1}(3 - 7) = -4 \cdot 3^{x-1} \] Thus: \[ \frac{19 \cdot 3^{x-2}}{-4 \

Try Premium now!
Try Premium and ask Thoth AI unlimited math questions now!
Maybe later Go Premium
Study can be a real struggle
Why not UpStudy it?
Select your plan below
Premium

You can enjoy

Start now
  • Step-by-step explanations
  • 24/7 expert live tutors
  • Unlimited number of questions
  • No interruptions
  • Full access to Answer and Solution
  • Full Access to PDF Chat, UpStudy Chat, Browsing Chat
Basic

Totally free but limited

  • Limited Solution
Welcome to UpStudy!
Please sign in to continue the Thoth AI Chat journey
Continue with Email
Or continue with
By clicking “Sign in”, you agree to our Terms of Use & Privacy Policy