Answer
1. \( \frac{2}{5} \)
2. \( 6=\frac{3^{x+1}+3^{x+2}}{8 \cdot 3^{x+1}} \)
3. \( \frac{1}{2} \)
4. \( \frac{1}{4} \)
5. \( -\frac{19}{12} \)
Solution
Simplify the expression by following steps:
- step0: Solution:
\(\frac{\left(2\times 3^{x}+3^{x-2}\right)}{\left(3^{x+1}-7\times 3^{x-1}\right)}\)
- step1: Remove the parentheses:
\(\frac{2\times 3^{x}+3^{x-2}}{3^{x+1}-7\times 3^{x-1}}\)
- step2: Subtract the terms:
\(\frac{2\times 3^{x}+3^{x-2}}{2\times 3^{x-1}}\)
- step3: Factor the expression:
\(\frac{\left(2+3^{-2}\right)\times 3^{x}}{2\times 3^{x-1}}\)
- step4: Reduce the fraction:
\(\frac{\left(2+3^{-2}\right)\times 3}{2}\)
- step5: Calculate:
\(\frac{\frac{19}{3}}{2}\)
- step6: Multiply by the reciprocal:
\(\frac{19}{3}\times \frac{1}{2}\)
- step7: Multiply the terms:
\(\frac{19}{3\times 2}\)
- step8: Multiply the terms:
\(\frac{19}{6}\)
Calculate or simplify the expression \( (2^(x+2)-2^(x+1))/(2^x+2^(x+2)) \).
Simplify the expression by following steps:
- step0: Solution:
\(\frac{\left(2^{x+2}-2^{x+1}\right)}{\left(2^{x}+2^{x+2}\right)}\)
- step1: Remove the parentheses:
\(\frac{2^{x+2}-2^{x+1}}{2^{x}+2^{x+2}}\)
- step2: Subtract the terms:
\(\frac{2^{x+1}}{2^{x}+2^{x+2}}\)
- step3: Add the terms:
\(\frac{2^{x+1}}{5\times 2^{x}}\)
- step4: Divide the terms:
\(\frac{2}{5}\)
Calculate or simplify the expression \( (4^x+3*2^(2*x+1))/(7*2^(2*x+1)) \).
Simplify the expression by following steps:
- step0: Solution:
\(\frac{\left(4^{x}+3\times 2^{2x+1}\right)}{\left(7\times 2^{2x+1}\right)}\)
- step1: Remove the parentheses:
\(\frac{4^{x}+3\times 2^{2x+1}}{7\times 2^{2x+1}}\)
- step2: Add the terms:
\(\frac{7\times 2^{2x}}{7\times 2^{2x+1}}\)
- step3: Reduce the fraction:
\(\frac{2^{2x}}{2^{2x+1}}\)
- step4: Divide the numbers:
\(\frac{1}{2^{2x+1-2x}}\)
- step5: Subtract the terms:
\(\frac{1}{2^{1}}\)
- step6: Simplify:
\(\frac{1}{2}\)
Calculate or simplify the expression \( (12^x+4^x*3^(x+1))/(2^(2*x+4)*3^x) \).
Simplify the expression by following steps:
- step0: Solution:
\(\frac{\left(12^{x}+4^{x}\times 3^{x+1}\right)}{\left(2^{2x+4}\times 3^{x}\right)}\)
- step1: Remove the parentheses:
\(\frac{12^{x}+4^{x}\times 3^{x+1}}{2^{2x+4}\times 3^{x}}\)
- step2: Add the terms:
\(\frac{4\times 12^{x}}{2^{2x+4}\times 3^{x}}\)
- step3: Factor the expression:
\(\frac{2^{2}\times 12^{x}}{2^{4+2x}\times 3^{x}}\)
- step4: Reduce the fraction:
\(\frac{12^{x}}{2^{2+2x}\times 3^{x}}\)
- step5: Factor the expression:
\(\frac{2^{2x}\times 3^{x}}{2^{2x+2}\times 3^{x}}\)
- step6: Reduce the fraction:
\(\frac{2^{2x}}{2^{2x+2}}\)
- step7: Divide the numbers:
\(\frac{1}{2^{2x+2-2x}}\)
- step8: Subtract the terms:
\(\frac{1}{2^{2}}\)
- step9: Evaluate the power:
\(\frac{1}{4}\)
Let's simplify each expression step by step.
1. **Expression:**
\[
\frac{2^{x+2}-2^{x+1}}{2^{x}+2^{x+2}}
\]
**Simplification:**
- The numerator can be factored as \(2^{x+1}(2 - 1) = 2^{x+1}\).
- The denominator can be factored as \(2^{x}(1 + 2^{2}) = 2^{x}(1 + 4) = 5 \cdot 2^{x}\).
- Thus, the expression simplifies to:
\[
\frac{2^{x+1}}{5 \cdot 2^{x}} = \frac{2}{5}
\]
2. **Expression:**
\[
6=\frac{3^{x+1}+3^{x+2}}{8 \cdot 3^{x+1}}
\]
**Note:** This is an equation, so we need to solve it instead of simplifying. Let's proceed with solving it.
3. **Expression:**
\[
\frac{4^{x}+3 \cdot 2^{2 x+1}}{7 \cdot 2^{2 x+1}}
\]
**Simplification:**
- Rewrite \(4^{x}\) as \(2^{2x}\), so the numerator becomes \(2^{2x} + 3 \cdot 2^{2x + 1} = 2^{2x} + 6 \cdot 2^{2x} = 7 \cdot 2^{2x}\).
- The denominator is \(7 \cdot 2^{2x + 1}\).
- Thus, the expression simplifies to:
\[
\frac{7 \cdot 2^{2x}}{7 \cdot 2^{2x + 1}} = \frac{1}{2}
\]
4. **Expression:**
\[
\frac{12^{x}+4^{x} \cdot 3^{x+1}}{2^{2 x+4} \cdot 3^{x}}
\]
**Simplification:**
- Rewrite \(12^{x}\) as \(3^{x} \cdot 2^{2x}\) and \(4^{x}\) as \(2^{2x}\).
- The numerator becomes \(3^{x} \cdot 2^{2x} + 2^{2x} \cdot 3^{x+1} = 3^{x} \cdot 2^{2x} + 2^{2x} \cdot 3^{x} \cdot 3 = 4 \cdot 3^{x} \cdot 2^{2x}\).
- The denominator is \(2^{2x + 4} \cdot 3^{x}\).
- Thus, the expression simplifies to:
\[
\frac{4 \cdot 3^{x} \cdot 2^{2x}}{2^{2x + 4} \cdot 3^{x}} = \frac{4}{16} = \frac{1}{4}
\]
5. **Expression:**
\[
\frac{2 \cdot 3^{x}+3^{x-2}}{3^{x+1}-7 \cdot 3^{x-1}}
\]
**Simplification:**
- The numerator can be factored as \(3^{x-2}(2 \cdot 3^{2} + 1) = 3^{x-2}(18 + 1) = 19 \cdot 3^{x-2}\).
- The denominator can be factored as \(3^{x-1}(3 - 7) = -4 \cdot 3^{x-1}\).
- Thus, the expression simplifies to:
\[
\frac{19 \cdot 3^{x-2}}{-4 \cdot 3^{x-1}} = \frac{19}{-4 \cdot 3} = -\frac{19}{12}
\]
### Summary of Results:
1. \( \frac{2}{5} \)
2. **Equation to solve:** \( 6=\frac{3^{x+1}+3^{x+2}}{8 \cdot 3^{x+1}} \)
3. \( \frac{1}{2} \)
4. \( \frac{1}{4} \)
5. \( -\frac{19}{12} \)
Answered by UpStudy AI and reviewed by a Professional Tutor

Explain

Simplify this solution