Question
upstudy study bank question image url

Is \( (-1,-3) \) a solution to the linear equation \( y=x-2 \)

Ask by Bond Patel. in the United States
Feb 26,2025

Upstudy AI Solution

Tutor-Verified Answer

Answer

El punto \( (-1, -3) \) es una solución de la ecuación \( y = x - 2 \).

Solution

Para determinar si el punto \( (-1, -3) \) es una solución de la ecuación lineal \( y = x - 2 \), debemos sustituir el valor de \( x \) en la ecuación y ver si obtenemos el valor de \( y \) correspondiente. 1. **Sustitución**: Sustituimos \( x = -1 \) en la ecuación \( y = x - 2 \). \[ y = -1 - 2 \] 2. **Cálculo**: Realizamos la operación. \[ y = -3 \] 3. **Comparación**: Ahora comparamos el valor de \( y \) que obtuvimos con el valor de \( y \) del punto \( (-1, -3) \). El valor de \( y \) que obtuvimos es \( -3 \), que coincide con el valor de \( y \) del punto. Dado que ambos valores son iguales, podemos concluir que \( (-1, -3) \) es una solución de la ecuación \( y = x - 2 \).

Answered by UpStudy AI and reviewed by a Professional Tutor

error msg
Explain
Simplify this solution

Mind Expander

To determine if the point \((-1, -3)\) is a solution to the equation \(y = x - 2\), we can substitute \(x = -1\) into the equation. Plugging in, we have: \[ y = -1 - 2 = -3 \] Since the \(y\)-value obtained from the equation (-3) matches the \(y\)-value of the point (-3), we can conclude that \((-1, -3)\) is indeed a solution to the linear equation \(y = x - 2\). Now, let's explore some engaging insights! Did you know that the concept of linear equations can be traced back to ancient civilizations? Babylonians used geometric methods to solve linear equations over 4,000 years ago, paving the way for modern algebra. If you're planning to graph this equation, remember that the slope-intercept form is super useful! Always double-check your slope (in this case, the coefficient of \(x\) is 1) and y-intercept (which is -2 for this equation). A common mistake is miscalculating these values, so watch those signs closely!

Try Premium now!
Try Premium and ask Thoth AI unlimited math questions now!
Maybe later Go Premium
Study can be a real struggle
Why not UpStudy it?
Select your plan below
Premium

You can enjoy

Start now
  • Step-by-step explanations
  • 24/7 expert live tutors
  • Unlimited number of questions
  • No interruptions
  • Full access to Answer and Solution
  • Full Access to PDF Chat, UpStudy Chat, Browsing Chat
Basic

Totally free but limited

  • Limited Solution
Welcome to UpStudy!
Please sign in to continue the Thoth AI Chat journey
Continue with Email
Or continue with
By clicking “Sign in”, you agree to our Terms of Use & Privacy Policy