Question
upstudy study bank question image url

37. Sabendo-se que \( \cos x=\frac{2 \sqrt{2}}{3} \), onde \( x \in\left[0 ; \frac{\pi}{2}\right] \), então \( \operatorname{tg} \frac{x}{2} \) é igual a: \( \begin{array}{lll}\text { a) } 3-2 \sqrt{2} & \text { b) } 3+2 \sqrt{2} & \text { c) } 2-\sqrt{2} \\ \text { d) } 3 \sqrt{2}-3 & \text { e) } 2 \sqrt{2}-3 & \end{array} \)

Ask by Ross Matthews. in Brazil
Feb 27,2025

Upstudy AI Solution

Tutor-Verified Answer

Answer

\( \tan\left(\frac{x}{2}\right) = 3 - 2\sqrt{2} \), choice a).

Solution

Temos que cos x = (2√2)/3, com x ∈ [0, π/2]. Para encontrar tan(x/2), usaremos a relação:   tan(x/2) = √[(1 - cos x)/(1 + cos x)] Substituindo cos x = (2√2)/3:   tan(x/2) = √[(1 - (2√2)/3) / (1 + (2√2)/3)]     = √[((3 - 2√2)/3) / ((3 + 2√2)/3)]     = √[(3 - 2√2) / (3 + 2√2)] Observando que (3 + 2√2)(3 - 2√2) = 9 - (2√2)² = 9 - 8 = 1, podemos multiplicar o numerador e o denominador por (3 - 2√2) para obter:   (3 - 2√2) / (3 + 2√2) = (3 - 2√2)² / 1 = (3 - 2√2)² Assim:   tan(x/2) = √[(3 - 2√2)²] = |3 - 2√2| Como 3 - 2√2 > 0 (pois 2√2 ≈ 2.828 e 3 > 2.828), temos:   tan(x/2) = 3 - 2√2 Portanto, a alternativa correta é a letra a).

Answered by UpStudy AI and reviewed by a Professional Tutor

error msg
Explain
Simplify this solution

The Deep Dive

Para encontrar \( \operatorname{tg} \frac{x}{2} \), podemos utilizar a fórmula de meio ângulo: \[ \operatorname{tg} \frac{x}{2} = \frac{1 - \cos x}{\sin x} \] Sabemos que \( \cos x = \frac{2 \sqrt{2}}{3} \). Para encontrar \( \sin x \), podemos utilizar a identidade \( \sin^2 x + \cos^2 x = 1 \): \[ \sin^2 x = 1 - \left(\frac{2 \sqrt{2}}{3}\right)^2 = 1 - \frac{8}{9} = \frac{1}{9} \] Portanto, \( \sin x = \frac{1}{3} \). Agora substituindo na fórmula de meio ângulo: \[ \operatorname{tg} \frac{x}{2} = \frac{1 - \frac{2 \sqrt{2}}{3}}{\frac{1}{3}} = 3\left(1 - \frac{2 \sqrt{2}}{3}\right) = 3 - 2\sqrt{2} \] Assim, \( \operatorname{tg} \frac{x}{2} = 3 - 2\sqrt{2} \). Portanto, a resposta correta é **a) \( 3 - 2 \sqrt{2} \)**.

Related Questions

Latest Trigonometry Questions

Try Premium now!
Try Premium and ask Thoth AI unlimited math questions now!
Maybe later Go Premium
Study can be a real struggle
Why not UpStudy it?
Select your plan below
Premium

You can enjoy

Start now
  • Step-by-step explanations
  • 24/7 expert live tutors
  • Unlimited number of questions
  • No interruptions
  • Full access to Answer and Solution
  • Full Access to PDF Chat, UpStudy Chat, Browsing Chat
Basic

Totally free but limited

  • Limited Solution
Welcome to UpStudy!
Please sign in to continue the Thoth AI Chat journey
Continue with Email
Or continue with
By clicking “Sign in”, you agree to our Terms of Use & Privacy Policy