Question
upstudy study bank question image url

\( \begin{array}{l}\text { Determina, se esiste, l'equazione della circont } \\ 224 A(-4 ; 0), \quad B(-2 ;-1), \quad C(2 ;-3) \\ 2483 \\ 2(1 ;-1),\end{array} B(1 ; 3), \quad C(-2 ; 0) \).

Ask by Campbell Morgan. in Italy
Feb 24,2025

Upstudy AI Solution

Tutor-Verified Answer

Answer

Non esiste una circonferenza che passa per tutti e tre i punti dati A(-4, 0), B(-2, -1) e C(2, -3).

Solution

Okay, I need to determine if there exists an equation for a circle that passes through the points A(-4, 0), B(-2, -1), and C(2, -3). Let's break this down step by step. First, I recall that the general equation of a circle in the Cartesian plane is: \[ (x - h)^2 + (y - k)^2 = r^2 \] where \((h, k)\) is the center of the circle and \(r\) is its radius. Given three points, I can set up a system of equations to solve for \(h\), \(k\), and \(r\). Plugging in the coordinates of points A, B, and C into the general equation: 1. For point A(-4, 0): \[ (-4 - h)^2 + (0 - k)^2 = r^2 \quad \Rightarrow \quad (4 + h)^2 + k^2 = r^2 \quad \text{(Equation 1)} \] 2. For point B(-2, -1): \[ (-2 - h)^2 + (-1 - k)^2 = r^2 \quad \Rightarrow \quad (2 + h)^2 + (1 + k)^2 = r^2 \quad \text{(Equation 2)} \] 3. For point C(2, -3): \[ (2 - h)^2 + (-3 - k)^2 = r^2 \quad \Rightarrow \quad (2 - h)^2 + (3 + k)^2 = r^2 \quad \text{(Equation 3)} \] Now, I have three equations with three unknowns (\(h\), \(k\), and \(r\)). To solve for these, I can subtract Equation 2 from Equation 1 to eliminate \(r^2\): \[ (4 + h)^2 + k^2 - [(2 + h)^2 + (1 + k)^2] = 0 \] Expanding the squares: \[ (16 + 8h + h^2) + k^2 - (4 + 4h + h^2 + 1 + 2k + k^2) = 0 \] Simplifying: \[ 16 + 8h + h^2 + k^2 - 4 - 4h - h^2 - 1 - 2k - k^2 = 0 \] \[ (16 - 4 - 1) + (8h - 4h) + (h^2 - h^2) + (k^2 - k^2) - 2k = 0 \] \[ 11 + 4h - 2k = 0 \quad \Rightarrow \quad 4h - 2k = -11 \quad \text{(Equation 4)} \] Next, subtract Equation 3 from Equation 2: \[ (2 + h)^2 + (1 + k)^2 - [(2 - h)^2 + (3 + k)^2] = 0 \] Expanding the squares: \[ (4 + 4h + h^2) + (1 + 2k + k^2) - (4 - 4h + h^2 + 9 + 6k + k^2) = 0 \] Simplifying: \[ 4 + 4h + h^2 + 1 + 2k + k^2 - 4 + 4h - h^2 - 9 - 6k - k^2 = 0 \] \[ (4 + 1 - 4 - 9) + (4h + 4h) + (h^2 - h^2) + (k^2 - k^2) + (2k - 6k) = 0 \] \[ -8 + 8h - 4k = 0 \quad \Rightarrow \quad 8h - 4k = 8 \quad \text{(Equation 5)} \] Now, I have two equations with two unknowns (\(h\) and \(k\)): \[ \begin{cases} 4h - 2k = -11 \quad \text{(Equation 4)} \\ 8h - 4k = 8 \quad \text{(Equation 5)} \end{cases} \] To solve for \(h\) and \(k\), I can use the method of elimination. Multiply Equation 4 by 2 to align the coefficients of \(k\): \[ 8h - 4k = -22 \quad \text{(Equation 6)} \] Now, subtract Equation 5 from Equation 6: \[ (8h - 4k) - (8h - 4k) = -22 - 8 \] \[ 0 = -30 \] This is a contradiction, which means there is no solution for \(h\) and \(k\) that satisfies both equations simultaneously. Therefore, there is no circle that passes through all three given points A(-4, 0), B(-2, -1), and C(2, -3).

Answered by UpStudy AI and reviewed by a Professional Tutor

error msg
Explain
Simplify this solution

The Deep Dive

Per determinare l'equazione della circonferenza che passa per i punti A(-4; 0), B(-2; -1) e C(2; -3), dobbiamo prima trovare il centro e il raggio della circonferenza. Possiamo utilizzare la formula generale per la circonferenza: \[(x - h)^2 + (y - k)^2 = r^2,\] dove (h, k) è il centro e r è il raggio. Un modo per trovare le coordinate del centro è calcolare le equazioni delle linee perpendicolari ai segmenti AB e BC, e trovare il punto di intersezione. Continuando con i punti B(1; 3), C(-2; 0), per trovare l'equazione della circonferenza, possiamo ripetere lo stesso processo, trovando prima il centro e poi il raggio. Una volta trovato il centro, l'equazione risultante sarà nella forma standard. Sperimenta a tracciare i punti e le linee su carta per visualizzare meglio come le circonferenze si comportano nel piano!

Related Questions

Latest Geometry Questions

Try Premium now!
Try Premium and ask Thoth AI unlimited math questions now!
Maybe later Go Premium
Study can be a real struggle
Why not UpStudy it?
Select your plan below
Premium

You can enjoy

Start now
  • Step-by-step explanations
  • 24/7 expert live tutors
  • Unlimited number of questions
  • No interruptions
  • Full access to Answer and Solution
  • Full Access to PDF Chat, UpStudy Chat, Browsing Chat
Basic

Totally free but limited

  • Limited Solution
Welcome to UpStudy!
Please sign in to continue the Thoth AI Chat journey
Continue with Email
Or continue with
By clicking “Sign in”, you agree to our Terms of Use & Privacy Policy