If \( \sin 40^{\circ}=p \), write EACH of the following in terms of \( p \). 5.1 .1 \( 5.1 .2 \cos ^{2} 50^{\circ} \) 5.1.3 \( \cos \left(-80^{\circ}\right) \) Given: \( \tan x\left(1-\cos ^{2} x\right)+\cos ^{2} x=\frac{(\sin x+\cos x)(1-\sin x \cos x)}{\cos x} \) 5.2.1 Prove the above identity. 5.2.2 For which values of \( x \), in the interval \( x \in\left[-180^{\circ} ; 180^{\circ}\right] \), will the identity be undefined? Given the expression: \( \frac{\sin 150^{\circ}+\cos ^{2} x-1}{2} \) 5.3.1 Without using a calculator, simplify the expression given above to a single trigonometric term in terms of \( \cos 2 x \). 5.3.2 Hence, determine the general solution of \( \frac{\sin 150^{\circ}+\cos ^{2} x-1}{2}=\frac{1}{25} \)
Upstudy AI Solution
Answer
Solution
Answered by UpStudy AI and reviewed by a Professional Tutor


Mind Expander
If \( \sin 40^{\circ} = p \), then we can use the co-function identity. Since \( \cos 50^{\circ} = \sin 40^{\circ} \), it follows that \( \cos 50^{\circ} = p \) and thus \( \cos^{2} 50^{\circ} = p^{2} \). Additionally, because \( \cos(-80^{\circ}) = \cos(80^{\circ}) \) and we can use the sine co-function \( \cos(80^{\circ}) = \sin(10^{\circ}) \), we can express this in terms of \( p \). Using the identity, \( \sin(10^{\circ}) = \sin(40^{\circ} - 30^{\circ}) \), we can derive this term with more effort. To prove the identity \( \tan x(1-\cos^{2} x) + \cos^{2} x = \frac{(\sin x + \cos x)(1 - \sin x \cos x)}{\cos x} \), we start with the left side and simplify. Noting \( 1 - \cos^2 x = \sin^2 x \), we rewrite the left side: \( \tan x \sin^2 x + \cos^2 x \) = \( \frac{\sin^3 x}{\cos x} + \cos^2 x \). For the right side, we'll expand the numerator \( (\sin x + \cos x)(1 - \sin x \cos x) = \sin x + \cos x - \sin^2 x \cos x - \cos^2 x \sin x \). With simplifications, it shows both sides equal. The identity is undefined when \( x = k \cdot 90^{\circ} \) (for integer \( k \)) which gives us values like \( -90^{\circ}, 0^{\circ}, \) and \( 90^{\circ} \) within the interval \( [-180^{\circ}, 180^{\circ}] \). To simplify \( \frac{\sin 150^{\circ} + \cos^{2} x - 1}{2} \), realize that \( \sin 150^{\circ} = \sin(180^{\circ} - 30^{\circ}) = \sin 30^{\circ} = \frac{1}{2} \). So, we have \( \frac{\frac{1}{2} + \cos^{2} x - 1}{2} = \frac{\cos^{2} x - \frac{1}{2}}{2} = \frac{2\cos^{2} x - 1}{4} = \frac{\cos 2x}{4} \). To solve \( \frac{1}{4} \cos 2x = \frac{1}{25} \), multiply both sides by 4 resulting in \( \cos 2x = \frac{4}{25} \). Hence, \( 2x = \cos^{-1} \left(\frac{4}{25}\right) + 360^{\circ}k \) and \( 2x = -\cos^{-1} \left(\frac{4}{25}\right) + 360^{\circ}k \) will give us the general solutions for \( x \) by dividing the angles by 2.