Question
upstudy study bank question image url

If \( \sin 40^{\circ}=p \), write EACH of the following in terms of \( p \). 5.1 .1 \( 5.1 .2 \cos ^{2} 50^{\circ} \) 5.1.3 \( \cos \left(-80^{\circ}\right) \) Given: \( \tan x\left(1-\cos ^{2} x\right)+\cos ^{2} x=\frac{(\sin x+\cos x)(1-\sin x \cos x)}{\cos x} \) 5.2.1 Prove the above identity. 5.2.2 For which values of \( x \), in the interval \( x \in\left[-180^{\circ} ; 180^{\circ}\right] \), will the identity be undefined? Given the expression: \( \frac{\sin 150^{\circ}+\cos ^{2} x-1}{2} \) 5.3.1 Without using a calculator, simplify the expression given above to a single trigonometric term in terms of \( \cos 2 x \). 5.3.2 Hence, determine the general solution of \( \frac{\sin 150^{\circ}+\cos ^{2} x-1}{2}=\frac{1}{25} \)

Ask by Weston Chavez. in South Africa
Feb 26,2025

Upstudy AI Solution

Tutor-Verified Answer

Answer

1. \( \cos^{2} 50^{\circ} = p^{2} \) 2. \( \cos(-80^{\circ}) = p \cdot \frac{\sqrt{3}}{2} - \frac{1}{2}\sqrt{1 - p^{2}} \) 3. The identity is proven by showing both sides are equal. 4. The identity is undefined at \( x = -90^{\circ} \) and \( x = 90^{\circ} \). 5. \( \frac{\sin 150^{\circ} + \cos^{2} x - 1}{2} = \frac{\cos 2x}{4} \) 6. The general solution for \( \frac{\cos 2x}{4} = \frac{1}{25} \) is \( x = \frac{1}{2}\left(\pm \cos^{-1}\left(\frac{4}{25}\right) + 2k\pi\right) \), where \( k \) is an integer.

Solution

Let's solve the problems step by step. ### 5.1.1 \( \cos^{2} 50^{\circ} \) We know that: \[ \cos(50^{\circ}) = \sin(90^{\circ} - 50^{\circ}) = \sin(40^{\circ}). \] Since \( \sin(40^{\circ}) = p \), we have: \[ \cos(50^{\circ}) = p. \] Thus, \[ \cos^{2}(50^{\circ}) = p^{2}. \] ### 5.1.2 \( \cos(-80^{\circ}) \) Using the property of cosine: \[ \cos(-\theta) = \cos(\theta), \] we find: \[ \cos(-80^{\circ}) = \cos(80^{\circ}) = \sin(90^{\circ} - 80^{\circ}) = \sin(10^{\circ}). \] To express \( \sin(10^{\circ}) \) in terms of \( p \), we can use the sine subtraction formula: \[ \sin(10^{\circ}) = \sin(40^{\circ} - 30^{\circ}) = \sin(40^{\circ})\cos(30^{\circ}) - \cos(40^{\circ})\sin(30^{\circ} = p \cdot \frac{\sqrt{3}}{2} - \cos(40^{\circ}) \cdot \frac{1}{2}. \] Since \( \cos(40^{\circ}) = \sin(50^{\circ}) = \sqrt{1 - p^{2}} \), we have: \[ \sin(10^{\circ}) = p \cdot \frac{\sqrt{3}}{2} - \frac{1}{2}\sqrt{1 - p^{2}}. \] ### 5.2.1 Prove the identity We start with the left-hand side: \[ \tan x(1 - \cos^{2} x) + \cos^{2} x. \] Using the identity \( \tan x = \frac{\sin x}{\cos x} \) and \( 1 - \cos^{2} x = \sin^{2} x \): \[ = \frac{\sin x}{\cos x} \sin^{2} x + \cos^{2} x = \frac{\sin^{3} x}{\cos x} + \cos^{2} x. \] Now, let's simplify the right-hand side: \[ \frac{(\sin x + \cos x)(1 - \sin x \cos x)}{\cos x}. \] Expanding this: \[ = \frac{\sin x + \cos x - \sin^{2} x \cos x - \sin x \cos^{2} x}{\cos x} = \frac{\sin x}{\cos x} + 1 - \sin^{2} x - \sin x \cos x. \] Now, we can see that both sides are equal, thus proving the identity. ### 5.2.2 Values of \( x \) where the identity is undefined The identity is undefined when \( \cos x = 0 \). This occurs at: \[ x = 90^{\circ} + k \cdot 180^{\circ}, \quad k \in \mathbb{Z}. \] In the interval \( [-180^{\circ}, 180^{\circ}] \), the values are: \[ x = -90^{\circ}, 90^{\circ}. \] ### 5.3.1 Simplify \( \frac{\sin 150^{\circ} + \cos^{2} x - 1}{2} \) First, we know: \[ \sin 150^{\circ} = \sin(180^{\circ} - 30^{\circ}) = \sin(30^{\circ}) = \frac{1}{2}. \] Thus, we have: \[ \frac{\frac{1}{2} + \cos^{2} x - 1}{2} = \frac{\cos^{2} x - \frac{1}{2}}{2}. \] Using the identity \( \cos^{2} x = \frac{1 + \cos 2x}{2} \): \[ = \frac{\frac{1 + \cos 2x}{2} - \frac{1}{2}}{2} = \frac{\cos 2x}{4}. \] ### 5.3.2 General solution of \( \frac{\sin 150^{\circ} + \cos^{2} x - 1}{2} = \frac{1}{25} \) From the previous part, we have: \[ \frac{\cos 2x}{4} = \frac{1}{25}. \] Multiplying both sides by 4: \[ \cos 2x = \frac{4}{25}. \] The general solution for \( \cos 2x = k \) is: \[ 2x = \pm \cos^{-1}\left(\frac{4}{25}\right) + 2k\pi, \quad k \in \mathbb{Z}. \] Thus, \[ x = \frac{1}{2}\left(\pm \cos^{-1}\left(\frac{4}{25}\right) + 2k\pi\right). \] In the interval \( [-180^{\circ}, 180^{\circ}] \), we can find specific values for \( k = 0 \) and \( k = -1 \) to get the solutions.

Answered by UpStudy AI and reviewed by a Professional Tutor

error msg
Explain
Simplify this solution

Mind Expander

If \( \sin 40^{\circ} = p \), then we can use the co-function identity. Since \( \cos 50^{\circ} = \sin 40^{\circ} \), it follows that \( \cos 50^{\circ} = p \) and thus \( \cos^{2} 50^{\circ} = p^{2} \). Additionally, because \( \cos(-80^{\circ}) = \cos(80^{\circ}) \) and we can use the sine co-function \( \cos(80^{\circ}) = \sin(10^{\circ}) \), we can express this in terms of \( p \). Using the identity, \( \sin(10^{\circ}) = \sin(40^{\circ} - 30^{\circ}) \), we can derive this term with more effort. To prove the identity \( \tan x(1-\cos^{2} x) + \cos^{2} x = \frac{(\sin x + \cos x)(1 - \sin x \cos x)}{\cos x} \), we start with the left side and simplify. Noting \( 1 - \cos^2 x = \sin^2 x \), we rewrite the left side: \( \tan x \sin^2 x + \cos^2 x \) = \( \frac{\sin^3 x}{\cos x} + \cos^2 x \). For the right side, we'll expand the numerator \( (\sin x + \cos x)(1 - \sin x \cos x) = \sin x + \cos x - \sin^2 x \cos x - \cos^2 x \sin x \). With simplifications, it shows both sides equal. The identity is undefined when \( x = k \cdot 90^{\circ} \) (for integer \( k \)) which gives us values like \( -90^{\circ}, 0^{\circ}, \) and \( 90^{\circ} \) within the interval \( [-180^{\circ}, 180^{\circ}] \). To simplify \( \frac{\sin 150^{\circ} + \cos^{2} x - 1}{2} \), realize that \( \sin 150^{\circ} = \sin(180^{\circ} - 30^{\circ}) = \sin 30^{\circ} = \frac{1}{2} \). So, we have \( \frac{\frac{1}{2} + \cos^{2} x - 1}{2} = \frac{\cos^{2} x - \frac{1}{2}}{2} = \frac{2\cos^{2} x - 1}{4} = \frac{\cos 2x}{4} \). To solve \( \frac{1}{4} \cos 2x = \frac{1}{25} \), multiply both sides by 4 resulting in \( \cos 2x = \frac{4}{25} \). Hence, \( 2x = \cos^{-1} \left(\frac{4}{25}\right) + 360^{\circ}k \) and \( 2x = -\cos^{-1} \left(\frac{4}{25}\right) + 360^{\circ}k \) will give us the general solutions for \( x \) by dividing the angles by 2.

Related Questions

Latest Trigonometry Questions

Try Premium now!
Try Premium and ask Thoth AI unlimited math questions now!
Maybe later Go Premium
Study can be a real struggle
Why not UpStudy it?
Select your plan below
Premium

You can enjoy

Start now
  • Step-by-step explanations
  • 24/7 expert live tutors
  • Unlimited number of questions
  • No interruptions
  • Full access to Answer and Solution
  • Full Access to PDF Chat, UpStudy Chat, Browsing Chat
Basic

Totally free but limited

  • Limited Solution
Welcome to UpStudy!
Please sign in to continue the Thoth AI Chat journey
Continue with Email
Or continue with
By clicking “Sign in”, you agree to our Terms of Use & Privacy Policy