Question
upstudy study bank question image url

7. Determine cual o cuales es o son paralelos a \( \boldsymbol{w} \) \[ \boldsymbol{w}=\frac{1}{2} i-\frac{2}{3} j+\frac{3}{4} k \text { : } \] a. \( 6 i-4 j+9 k \) b. \( 12 i+9 k \) c. \( -1 i+\frac{4}{3} j+\frac{3}{2} k \) d. \( \frac{3}{4} i-j+\frac{9}{8} k \)

Ask by Black King. in Colombia
Feb 27,2025

Upstudy AI Solution

Tutor-Verified Answer

Answer

La opción que es paralela a \( \boldsymbol{w} \) es la d: \( \frac{3}{4} \mathbf{i} - \mathbf{j} + \frac{9}{8} \mathbf{k} \).

Solution

Sign in to Unlock Answers for Free!

A Learning Platform Trusted by Millions of Real Students and Teachers.

star-icon Unlock

Answered by UpStudy AI and reviewed by a Professional Tutor

Beyond the Answer

Para determinar cuáles de los vectores son paralelos al vector \( \boldsymbol{w} = \frac{1}{2} i - \frac{2}{3} j + \frac{3}{4} k \), necesitamos comprobar si los vectores tienen la misma dirección, lo cual significa que deben ser múltiplos escalares de \( \boldsymbol{w} \). Al mirar los vectores propuestos: a. \( 6 i - 4 j + 9 k \) no es múltiplo asequible de \( \boldsymbol{w} \). b. \( 12 i + 9 k \) tampoco es múltiplo de \( \boldsymbol{w} \) ya que no hay un escalar que lo relacione. c. \( -1 i + \frac{4}{3} j + \frac{3}{2} k \) no cumple con ser múltiplo de \( \boldsymbol{w} \). d. \( \frac{3}{4} i - j + \frac{9}{8} k \) tampoco muestra relación directa como un múltiplo de \( \boldsymbol{w} \). Lo que podemos concluir es que ninguno de los vectores dados es paralelo al vector \( \boldsymbol{w} \).

Try Premium now!
Try Premium and ask Thoth AI unlimited math questions now!
Maybe later Go Premium
Study can be a real struggle
Why not UpStudy it?
Select your plan below
Premium

You can enjoy

Start now
  • Step-by-step explanations
  • 24/7 expert live tutors
  • Unlimited number of questions
  • No interruptions
  • Full access to Answer and Solution
  • Full Access to PDF Chat, UpStudy Chat, Browsing Chat
Basic

Totally free but limited

  • Limited Solution
Welcome to UpStudy!
Please sign in to continue the Thoth AI Chat journey
Continue with Email
Or continue with
By clicking “Sign in”, you agree to our Terms of Use & Privacy Policy